These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37846863)
1. 3D Wood Microfilter for Fast and Efficient Removal of Heavy Metal Ions from Water. He LT; Zhao LD; Sun W; Fang J; Liu XW; Qi JJ; Qian Y; Li H Langmuir; 2023 Oct; 39(43):15319-15327. PubMed ID: 37846863 [TBL] [Abstract][Full Text] [Related]
2. High-Throughput Metal Trap: Sulfhydryl-Functionalized Wood Membrane Stacks for Rapid and Highly Efficient Heavy Metal Ion Removal. Yang Z; Liu H; Li J; Yang K; Zhang Z; Chen F; Wang B ACS Appl Mater Interfaces; 2020 Apr; 12(13):15002-15011. PubMed ID: 32149496 [TBL] [Abstract][Full Text] [Related]
3. Robust functionalized cellulose-based porous composite for efficient capture and ultra-fast desorption of aqueous heavy metal pollution. Zhu C; Chu Z; Ni C; Chen Y; Chen Z; Yang Z Carbohydr Polym; 2024 Jan; 324():121513. PubMed ID: 37985098 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional nanoporous starch-based material for fast and highly efficient removal of heavy metal ions from wastewater. Fang Y; Lv X; Xu X; Zhu J; Liu P; Guo L; Yuan C; Cui B Int J Biol Macromol; 2020 Dec; 164():415-426. PubMed ID: 32663560 [TBL] [Abstract][Full Text] [Related]
5. Covalent Crosslinking Cellulose/Graphene Aerogels with High Elasticity and Adsorbability for Heavy Metal Ions Adsorption. Sun P; Wang M; Wu T; Guo L; Han W Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299235 [TBL] [Abstract][Full Text] [Related]
6. Lignin-rich sulfated wood nanofibers as high-performing adsorbents for the removal of lead and copper from water. Sirviö JA; Visanko M J Hazard Mater; 2020 Feb; 383():121174. PubMed ID: 31522065 [TBL] [Abstract][Full Text] [Related]
7. Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water. Du Z; Zheng T; Wang P; Hao L; Wang Y Bioresour Technol; 2016 Feb; 201():41-9. PubMed ID: 26630582 [TBL] [Abstract][Full Text] [Related]
8. Continuous fixed-bed column study and adsorption modeling removal of Ni Banza M; Rutto H J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(2):117-129. PubMed ID: 35137674 [TBL] [Abstract][Full Text] [Related]
9. Selective adsorption of heavy metals from water by a hyper-branched magnetic composite material: Characterization, performance, and mechanism. Zeng X; Zhang G; Zhu J J Environ Manage; 2022 Jul; 314():114979. PubMed ID: 35452884 [TBL] [Abstract][Full Text] [Related]
10. Improved Removal of Toxic Metal Ions by Incorporating Graphene Oxide into Bacterial Cellulose. Luo H; Feng F; Yao F; Zhu Y; Yang Z; Wan Y J Nanosci Nanotechnol; 2020 Feb; 20(2):719-730. PubMed ID: 31383067 [TBL] [Abstract][Full Text] [Related]
11. Surface Functionalization of Graphene Oxide with Hyperbranched Polyamide-Amine and Microcrystalline Cellulose for Efficient Adsorption of Heavy Metal Ions. Liu Z; Wang Q; Huang X; Qian X ACS Omega; 2022 Apr; 7(13):10944-10954. PubMed ID: 35415369 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of Effective Composite Biosorbents Based on Wood Sawdust and Natural Clay for Heavy Metals Removal from Water. Del Sole R; Fogel AA; Somin VA; Vasapollo G; Mergola L Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570026 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of Cellulose-Poly(Acrylic Acid) Using Sugarcane Bagasse Extracted Cellulose Fibres for the Removal of Heavy Metal Ions. Li F; Xie Z; Wen J; Tang T; Jiang L; Hu G; Li M Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240268 [TBL] [Abstract][Full Text] [Related]
14. Preparation of Mannitol-Modified Loofah and Its High-Efficient Adsorption of Cu(II) Ions in Aqueous Solution. Liu G; Liang J; Zhang J Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433010 [TBL] [Abstract][Full Text] [Related]
15. Novel adsorptive PVC nanofibrous/thiol-functionalized TNT composite UF membranes for effective dynamic removal of heavy metal ions. Hezarjaribi M; Bakeri G; Sillanpää M; Chaichi MJ; Akbari S; Rahimpour A J Environ Manage; 2021 Apr; 284():111996. PubMed ID: 33535125 [TBL] [Abstract][Full Text] [Related]
16. Preparation of esterified biomass waste hydrogels and their removal of Pb Zhang M; Zhou Y; Yang X; Lu X; Zhao X; Chen Z; Duan W; Li J; Zhao M; Yin Q Environ Sci Pollut Res Int; 2023 Apr; 30(19):56580-56593. PubMed ID: 36920603 [TBL] [Abstract][Full Text] [Related]
17. Designed synthesis of multifunctional lignin-based adsorbent for efficient heavy metal ions removal and electromagnetic wave absorption. Du B; Chai L; Zheng Q; Liu Y; Wang X; Chen X; Zhai S; Zhou J; Sun RC Int J Biol Macromol; 2023 Apr; 234():123668. PubMed ID: 36796567 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional macroscopic aminosilylated nanocellulose aerogels as sustainable bio-adsorbents for the effective removal of heavy metal ions. Geng B; Xu Z; Liang P; Zhang J; Christie P; Liu H; Wu S; Liu X Int J Biol Macromol; 2021 Nov; 190():170-177. PubMed ID: 34478799 [TBL] [Abstract][Full Text] [Related]
19. Reutilization of waste biomass from sugarcane bagasse and orange peel to obtain carbon foams: Applications in the metal ions removal. Licona-Aguilar ÁI; Torres-Huerta AM; Domínguez-Crespo MA; Palma-Ramírez D; Conde-Barajas E; Negrete-Rodríguez MXL; Rodríguez-Salazar AE; García-Zaleta DS Sci Total Environ; 2022 Jul; 831():154883. PubMed ID: 35358521 [TBL] [Abstract][Full Text] [Related]
20. In Situ Growth of Metal-Organic Frameworks in Three-Dimensional Aligned Lumen Arrays of Wood for Rapid and Highly Efficient Organic Pollutant Removal. Guo R; Cai X; Liu H; Yang Z; Meng Y; Chen F; Li Y; Wang B Environ Sci Technol; 2019 Mar; 53(5):2705-2712. PubMed ID: 30726066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]