BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37846873)

  • 1. Ultrastructure and Nanoporosity of Human Bone Shown with Correlative On-Axis Electron and Spectroscopic Tomographies.
    Micheletti C; Shah FA; Palmquist A; Grandfield K
    ACS Nano; 2023 Dec; 17(24):24710-24724. PubMed ID: 37846873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiscale finite element investigation on the role of intra- and extra-fibrillar mineralisation on the elastic properties of bone tissue.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2022 May; 129():105139. PubMed ID: 35248874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of Collagen-Mineral Arrangement Using Atom Probe Tomography.
    Lee BEJ; Langelier B; Grandfield K
    Adv Biol (Weinh); 2021 Sep; 5(9):e2100657. PubMed ID: 34296817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning transmission electron microscopic tomography of cortical bone using Z-contrast imaging.
    McNally E; Nan F; Botton GA; Schwarcz HP
    Micron; 2013 Jun; 49():46-53. PubMed ID: 23545162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography.
    Landis WJ; Hodgens KJ; Arena J; Song MJ; McEwen BF
    Microsc Res Tech; 1996 Feb; 33(2):192-202. PubMed ID: 8845518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractal-like hierarchical organization of bone begins at the nanoscale.
    Reznikov N; Bilton M; Lari L; Stevens MM; Kröger R
    Science; 2018 May; 360(6388):. PubMed ID: 29724924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone mineral organization at the mesoscale: A review of mineral ellipsoids in bone and at bone interfaces.
    Micheletti C; Hurley A; Gourrier A; Palmquist A; Tang T; Shah FA; Grandfield K
    Acta Biomater; 2022 Apr; 142():1-13. PubMed ID: 35202855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A search for apatite crystals in the gap zone of collagen fibrils in bone using dark-field illumination.
    Schwarcz HP; Binkley DM; Luo L; Grandfield K
    Bone; 2020 Jun; 135():115304. PubMed ID: 32145461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction.
    Landis WJ; Song MJ; Leith A; McEwen L; McEwen BF
    J Struct Biol; 1993; 110(1):39-54. PubMed ID: 8494671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium phosphate crystals of pickerel (Americanus americanus) and herring (Clupea harengus) bone.
    Lee DD; Glimcher MJ
    J Mol Biol; 1991 Feb; 217(3):487-501. PubMed ID: 1994036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of collagen fibrils in cross sections of bone by electron energy loss spectroscopy (EELS).
    Lee BEJ; Luo L; Grandfield K; Andrei CM; Schwarcz HP
    Micron; 2019 Sep; 124():102706. PubMed ID: 31255883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale.
    Fielder M; Nair AK
    Biomech Model Mechanobiol; 2019 Feb; 18(1):57-68. PubMed ID: 30088113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating the role of diverse mineralisation paradigms on bone biomechanics - a coarse-grained molecular dynamics investigation.
    Tavakol M; Vaughan TJ
    Nanoscale; 2024 Feb; 16(6):3173-3184. PubMed ID: 38259246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional ultrastructure reconstruction of tendinous components at the bifurcation of the bovine superficial digital flexor tendon using array and STEM tomographies.
    Takahashi N; Kametani K; Ota R; Tangkawattana P; Iwasaki T; Hasegawa Y; Ueda H; Hosotani M; Watanabe T
    J Anat; 2021 Jan; 238(1):63-72. PubMed ID: 32794178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The locus of mineral crystallites in bone.
    Lees S; Prostak K
    Connect Tissue Res; 1988; 18(1):41-54. PubMed ID: 3180814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone matrix development in steroid-induced osteoporosis is associated with a consistently reduced fibrillar stiffness linked to altered bone mineral quality.
    Xi L; De Falco P; Barbieri E; Karunaratne A; Bentley L; Esapa CT; Terrill NJ; Brown SDM; Cox RD; Davis GR; Pugno NM; Thakker RV; Gupta HS
    Acta Biomater; 2018 Aug; 76():295-307. PubMed ID: 29902593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focused ion beam-SEM 3D analysis of mineralized osteonal bone: lamellae and cement sheath structures.
    Raguin E; Rechav K; Shahar R; Weiner S
    Acta Biomater; 2021 Feb; 121():497-513. PubMed ID: 33217569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructure of Bone: Hierarchical Features from Nanometer to Micrometer Scale Revealed in Focused Ion Beam Sections in the TEM.
    Grandfield K; Vuong V; Schwarcz HP
    Calcif Tissue Int; 2018 Dec; 103(6):606-616. PubMed ID: 30008091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Irregular shaped, assumably semi-crystalline calciumphosphate platelet deposition at the mineralization front of rabbit femur osteotomy: a HR-TEM study.
    Grüner D; Lips KS; Heiss C; Schnettler R; Kollmann T; Simon P; Kniep R
    Scanning; 2013; 35(3):169-82. PubMed ID: 22899186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy.
    Lees S; Prostak KS; Ingle VK; Kjoller K
    Calcif Tissue Int; 1994 Sep; 55(3):180-9. PubMed ID: 7987731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.