These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37846901)

  • 41. Solution-processed perylene diimide-ethylene diamine cathodes for aqueous zinc ion batteries.
    Jiang B; Huang T; Yang P; Xi X; Su Y; Liu R; Wu D
    J Colloid Interface Sci; 2021 Sep; 598():36-44. PubMed ID: 33892442
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Organic-Inorganic Hybrid Cathode with Dual Energy-Storage Mechanism for Ultrahigh-Rate and Ultralong-Life Aqueous Zinc-Ion Batteries.
    Ma X; Cao X; Yao M; Shan L; Shi X; Fang G; Pan A; Lu B; Zhou J; Liang S
    Adv Mater; 2022 Feb; 34(6):e2105452. PubMed ID: 34786778
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel aluminum vanadate as a cathode material for high-performance aqueous zinc-ion batteries.
    Liu G; Xiao Y; Zhang W; Tang W; Zuo C; Zhang P; Dong S; Luo P
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33906187
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 14-Electron Redox Chemistry Enabled by Salen-Based π-Conjugated Framework Polymer Boosting High-Performance Lithium-Ion Storage.
    Zhang X; Kazemi SA; Xu X; Hill JP; Wang J; Li H; Alshehri SM; Ahamad T; Bando Y; Yamauchi Y; Wang Y; Pan L
    Small; 2024 Jul; 20(28):e2309321. PubMed ID: 38528424
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In Situ Electrochemical Transformation Reaction of Ammonium-Anchored Heptavanadate Cathode for Long-Life Aqueous Zinc-Ion Batteries.
    Dong W; Du M; Zhang F; Zhang X; Miao Z; Li H; Sang Y; Wang JJ; Liu H; Wang S
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5034-5043. PubMed ID: 33464805
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Small-Molecule Organic Cathode with Extended Conjugation toward Enhancing Na
    Yao Y; Pei M; Su C; Jin X; Qu Y; Song Z; Jiang W; Jian X; Hu F
    Small; 2024 Apr; ():e2401481. PubMed ID: 38616774
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mg
    Tang H; Chao F; Luo H; Yu K; Wang J; Chen H; Jia R; Xiong F; Pi Y; Luo P; An Q
    ChemSusChem; 2023 Aug; 16(15):e202300403. PubMed ID: 37078693
    [TBL] [Abstract][Full Text] [Related]  

  • 48. δ-VOPO
    Zhao D; Pu X; Tang S; Ding M; Zeng Y; Cao Y; Chen Z
    Chem Sci; 2023 Aug; 14(30):8206-8213. PubMed ID: 37538828
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries.
    Dong H; Li J; Zhao S; Jiao Y; Chen J; Tan Y; Brett DJL; He G; Parkin IP
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):745-754. PubMed ID: 33370108
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel Carbonyl Cathode for Green and Sustainable Aluminum Organic Batteries.
    Liu Y; Luo W; Lu S; Zhang Z; Chao Z; Fan J
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):53702-53710. PubMed ID: 36413483
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 2,3-diaminophenazine as a high-rate rechargeable aqueous zinc-ion batteries cathode.
    Liang J; Tang M; Cheng L; Zhu Q; Ji R; Liu X; Zhang Q; Wang H; Liu Z
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1262-1268. PubMed ID: 34571310
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oxygenated copper vanadium selenide composite nanostructures as a cathode material for zinc-ion batteries with high stability up to 10 000 cycles.
    Narsimulu D; Krishna BNV; Shanthappa R; Yu JS
    Nanoscale; 2023 Feb; 15(8):3978-3990. PubMed ID: 36723257
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vanadium Hexacyanoferrate as a High-Capacity and High-Voltage Cathode for Aqueous Rechargeable Zinc Ion Batteries.
    Zhang S; Pang Q; Ai Y; He W; Fu Y; Xing M; Tian Y; Luo X
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500891
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interfacial Self-assembly of Organics/MXene Hybrid Cathodes Toward High-Rate-Performance Sodium Ion Batteries.
    Gao Y; Xue P; Ji L; Pan X; Chen L; Guo W; Tang M; Wang C; Wang Z
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8036-8047. PubMed ID: 35119835
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chitosan-Assisted Fabrication of a Network C@V
    Liu C; Li R; Liu W; Shen G; Chen D
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37194-37200. PubMed ID: 34314171
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries.
    Li J; Luo N; Wan F; Zhao S; Li Z; Li W; Guo J; Shearing PR; Brett DJL; Carmalt CJ; Chai G; He G; Parkin IP
    Nanoscale; 2020 Oct; 12(40):20638-20648. PubMed ID: 32657312
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Facile synthesis of Bi
    Han Y; Jiu H; Zhang L; Wang C; Yue L; Wang C; Guo Z; Che S; Ma J; Li H
    Phys Chem Chem Phys; 2023 Aug; 25(32):21350-21357. PubMed ID: 37529980
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cross-Conjugated Polycatechol Organic Cathode for Aqueous Zinc-Ion Storage.
    Zhang S; Zhao W; Li H; Xu Q
    ChemSusChem; 2020 Jan; 13(1):188-195. PubMed ID: 31696615
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unveiling Organic Electrode Materials in Aqueous Zinc-Ion Batteries: From Structural Design to Electrochemical Performance.
    Li D; Guo Y; Zhang C; Chen X; Zhang W; Mei S; Yao CJ
    Nanomicro Lett; 2024 May; 16(1):194. PubMed ID: 38743294
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-Performance Aqueous Zinc-Ion Battery Based on Layered H
    He P; Quan Y; Xu X; Yan M; Yang W; An Q; He L; Mai L
    Small; 2017 Dec; 13(47):. PubMed ID: 29152849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.