BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37847126)

  • 21. Radiotherapy resistance acquisition in Glioblastoma. Role of SOCS1 and SOCS3.
    Ventero MP; Fuentes-Baile M; Quereda C; Perez-Valeciano E; Alenda C; Garcia-Morales P; Esposito D; Dorado P; Manuel Barbera V; Saceda M
    PLoS One; 2019; 14(2):e0212581. PubMed ID: 30811476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reciprocal regulation of SOCS 1 and SOCS3 enhances resistance to ionizing radiation in glioblastoma multiforme.
    Zhou H; Miki R; Eeva M; Fike FM; Seligson D; Yang L; Yoshimura A; Teitell MA; Jamieson CA; Cacalano NA
    Clin Cancer Res; 2007 Apr; 13(8):2344-53. PubMed ID: 17438093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. p53 affects epigenetic signature on SOCS1 promoter in response to TLR4 inhibition.
    Sheikh T; Sen E
    Cytokine; 2021 Apr; 140():155418. PubMed ID: 33476981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A suppressor of cytokine signaling 1 antagonist enhances antigen-presenting capacity and tumor cell antigen-specific cytotoxic T lymphocyte responses by human monocyte-derived dendritic cells.
    Wang Y; Wang S; Ding Y; Ye Y; Xu Y; He H; Li Q; Mi Y; Guo C; Lin Z; Liu T; Zhang Y; Chen Y; Yan J
    Clin Vaccine Immunol; 2013 Sep; 20(9):1449-56. PubMed ID: 23885028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SOCS1 silencing enhances antitumor activity of type I IFNs by regulating apoptosis in neuroendocrine tumor cells.
    Zitzmann K; Brand S; De Toni EN; Baehs S; Göke B; Meinecke J; Spöttl G; Meyer HH; Auernhammer CJ
    Cancer Res; 2007 May; 67(10):5025-32. PubMed ID: 17510435
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA interference-mediated silencing of SOCS-1 via lentiviral vector promotes apoptosis of alveolar epithelial cells in vitro.
    Qian YR; Zhang QR; Cheng T; Wan HY; Zhou M
    Mol Med Rep; 2012 Feb; 5(2):452-6. PubMed ID: 22086204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppressors of cytokine signaling inhibit effector T cell responses during Mycobacterium tuberculosis infection.
    Srivastava V; Vashishta M; Gupta S; Singla R; Singla N; Behera D; Natarajan K
    Immunol Cell Biol; 2011 Oct; 89(7):786-91. PubMed ID: 21537342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. IFN-alpha-induced signal transduction, gene expression, and antitumor activity of immune effector cells are negatively regulated by suppressor of cytokine signaling proteins.
    Zimmerer JM; Lesinski GB; Kondadasula SV; Karpa VI; Lehman A; Raychaudhury A; Becknell B; Carson WE
    J Immunol; 2007 Apr; 178(8):4832-45. PubMed ID: 17404264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and validation of SOCS1/2/3/4 as potential prognostic biomarkers and correlate with immune infiltration in glioblastoma.
    Dai L; Han Y; Yang Z; Zeng Y; Liang W; Shi Z; Tao Y; Liang X; Liu W; Zhou S; Xing Z; Hu W; Wang X
    J Cell Mol Med; 2023 Aug; 27(15):2194-2214. PubMed ID: 37315184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of SOCS1 silencing on proliferation and apoptosis of melanoma cells: An in vivo and in vitro study.
    Yu SJ; Long ZW
    Tumour Biol; 2017 May; 39(5):1010428317694315. PubMed ID: 28466787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bortezomib Sustains T Cell Function by Inducing miR-155-Mediated Downregulation of SOCS1 and SHIP1.
    Renrick AN; Thounaojam MC; de Aquino MTP; Chaudhuri E; Pandhare J; Dash C; Shanker A
    Front Immunol; 2021; 12():607044. PubMed ID: 33717088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The helicase HAGE prevents interferon-α-induced PML expression in ABCB5+ malignant melanoma-initiating cells by promoting the expression of SOCS1.
    Mathieu MG; Miles AK; Ahmad M; Buczek ME; Pockley AG; Rees RC; Regad T
    Cell Death Dis; 2014 Feb; 5(2):e1061. PubMed ID: 24525737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SOCS1 Gene Therapy for Head and Neck Cancers: An Experimental Study.
    Kajiyama T; Serada S; Fujimoto M; Ohkawara T; Komori M; Hyodo M; Naka T
    Anticancer Res; 2022 Jul; 42(7):3361-3372. PubMed ID: 35790291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anti-glioma effect of ginseng-derived exosomes-like nanoparticles by active blood-brain-barrier penetration and tumor microenvironment modulation.
    Kim J; Zhu Y; Chen S; Wang D; Zhang S; Xia J; Li S; Qiu Q; Lee H; Wang J
    J Nanobiotechnology; 2023 Aug; 21(1):253. PubMed ID: 37542285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of MET receptor tyrosine kinase signaling by suppressor of cytokine signaling 1 in hepatocellular carcinoma.
    Gui Y; Yeganeh M; Donates YC; Tobelaim WS; Chababi W; Mayhue M; Yoshimura A; Ramanathan S; Saucier C; Ilangumaran S
    Oncogene; 2015 Nov; 34(46):5718-28. PubMed ID: 25728680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stimuli-Responsive Multifunctional Nanomedicine for Enhanced Glioblastoma Chemotherapy Augments Multistage Blood-to-Brain Trafficking and Tumor Targeting.
    Martins C; Araújo M; Malfanti A; Pacheco C; Smith SJ; Ucakar B; Rahman R; Aylott JW; Préat V; Sarmento B
    Small; 2023 Jun; 19(22):e2300029. PubMed ID: 36852650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Upregulation of miR-572 transcriptionally suppresses SOCS1 and p21 and contributes to human ovarian cancer progression.
    Zhang X; Liu J; Zang D; Wu S; Liu A; Zhu J; Wu G; Li J; Jiang L
    Oncotarget; 2015 Jun; 6(17):15180-93. PubMed ID: 25893382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of SOCS1 in tumor progression and therapeutic application.
    Zhang J; Li H; Yu JP; Wang SE; Ren XB
    Int J Cancer; 2012 May; 130(9):1971-80. PubMed ID: 22025331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brain-targeted antigen-generating nanoparticles improve glioblastoma prognosis.
    Wang W; Zhang M; Zhang Q; Mohammadniaei M; Shen J; Sun Y
    J Control Release; 2022 Dec; 352():399-410. PubMed ID: 36309097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer.
    Wu D; Zhu ZQ; Tang HX; Shi ZE; Kang J; Liu Q; Qi J
    Theranostics; 2020; 10(21):9808-9829. PubMed ID: 32863961
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.