These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37847143)

  • 1. Optical characterization of high performance mirrors based on cavity ringdown time measurements with 6 degrees of freedom mirror positioning.
    Gutierrez N; Degallaix J; Hofman D; Michel C; Pinard L; Morville J; Battesti R; Cagnoli G
    Rev Sci Instrum; 2023 Oct; 94(10):. PubMed ID: 37847143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical characterization of a fiber Fabry-Perot cavity: precision measurement of intra-cavity loss, transmittance, and reflectance.
    Qin C; Guo X; Zhou J; Wang C; Rong J; Zhang Q; Li G; Zhang P; Zhang T
    Opt Express; 2024 Apr; 32(8):14780-14788. PubMed ID: 38859414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reflectivity mapping of large-aperture mirrors with cavity ringdown technique.
    Han Y; Li B; Lifeng G; Xiong S
    Appl Opt; 2017 Feb; 56(4):C35-C40. PubMed ID: 28158049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated fiber-mirror ion trap for strong ion-cavity coupling.
    Brandstätter B; McClung A; Schüppert K; Casabone B; Friebe K; Stute A; Schmidt PO; Deutsch C; Reichel J; Blatt R; Northup TE
    Rev Sci Instrum; 2013 Dec; 84(12):123104. PubMed ID: 24387417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realistic loss estimation due to the mirror surfaces in a 10 meters-long high finesse Fabry-Perot filter-cavity.
    Straniero N; Degallaix J; Flaminio R; Pinard L; Cagnoli G
    Opt Express; 2015 Aug; 23(16):21455-76. PubMed ID: 26367993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable, mode-matched, medium-finesse optical cavity incorporating a microcantilever mirror: optical characterization and laser cooling.
    Harris JG; Zwickl BM; Jayich AM
    Rev Sci Instrum; 2007 Jan; 78(1):013107. PubMed ID: 17503907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-spherical-mirror test for radius of curvature measurement using a Fabry-Pérot cavity.
    Bitou Y; Sato O; Telada S
    Opt Express; 2019 May; 27(10):13664-13674. PubMed ID: 31163826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro Fabry-Pérot Interferometer at Rayleigh Range.
    Tsujiie Y; Kawamura Y
    Sci Rep; 2018 Oct; 8(1):15193. PubMed ID: 30315200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsed measurement of high-reflectivity mirror phase retardances.
    Jacob D; Bretenaker F; Pourcelot P; Rio P; Dumont M; Doré A
    Appl Opt; 1994 May; 33(15):3175-8. PubMed ID: 20885683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precision Interferometric Measurements of Mirror Birefringence in High-Finesse Optical Resonators.
    Fleisher AJ; Long DA; Liu Q; Hodges JT
    Phys Rev A (Coll Park); 2016 Jan; 93(1):. PubMed ID: 27088133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ correction of mirror surface to reduce round-trip losses in Fabry-Perot cavities.
    Vajente G
    Appl Opt; 2014 Mar; 53(7):1459-65. PubMed ID: 24663376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate measurement method of Fabry-Perot cavity parameters via optical transfer function.
    Bondu F; Debieu O
    Appl Opt; 2007 May; 46(14):2611-4. PubMed ID: 17446908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors.
    Wang SS; Hu ZF; Li YH; Tong LM
    Opt Lett; 2009 Feb; 34(3):253-5. PubMed ID: 19183622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct readout of mirror reflectivity for cavity-enhanced gas sensing using Pound-Drever-Hall signals.
    Zhang H; Zhang D; Hu M; Wang Q
    Opt Lett; 2023 Nov; 48(22):5996-5999. PubMed ID: 37966772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.
    Bitarafan MH; DeCorby RG
    Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28758967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared scanning cavity ringdown for optical loss characterization of supermirrors.
    Truong GW; Winkler G; Zederbauer T; Bachmann D; Heu P; Follman D; White ME; Heckl OH; Cole GD
    Opt Express; 2019 Jul; 27(14):19141-19149. PubMed ID: 31503677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-optical optomechanics: an optical spring mirror.
    Singh S; Phelps GA; Goldbaum DS; Wright EM; Meystre P
    Phys Rev Lett; 2010 Nov; 105(21):213602. PubMed ID: 21231305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial coating inhomogeneity of highly reflective mirrors determined by cavity ringdown measurements.
    Tan Z; Yang K; Long X; Zhang Y; Loock HP
    Appl Opt; 2014 May; 53(13):2917-23. PubMed ID: 24921880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waveguide grating mirror in a fully suspended 10 meter Fabry-Perot cavity.
    Friedrich D; Barr BW; Brückner F; Hild S; Nelson J; Macarthur J; Plissi MV; Edgar MP; Huttner SH; Sorazu B; Kroker S; Britzger M; Kley EB; Danzmann K; Tünnermann A; Strain KA; Schnabel R
    Opt Express; 2011 Aug; 19(16):14955-63. PubMed ID: 21934857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.
    Lin GR; Chi YC; Liao YS; Kuo HC; Liao ZW; Wang HL; Lin GC
    Opt Express; 2012 Jun; 20(13):13622-35. PubMed ID: 22714427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.