These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 37847150)
1. Intuitive movement-based prosthesis control enables arm amputees to reach naturally in virtual reality. Segas E; Mick S; Leconte V; Dubois O; Klotz R; Cattaert D; de Rugy A Elife; 2023 Oct; 12():. PubMed ID: 37847150 [TBL] [Abstract][Full Text] [Related]
2. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves. Wendelken S; Page DM; Davis T; Wark HAC; Kluger DT; Duncan C; Warren DJ; Hutchinson DT; Clark GA J Neuroeng Rehabil; 2017 Nov; 14(1):121. PubMed ID: 29178940 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of a noninvasive command scheme for upper-limb prostheses in a virtual reality reach and grasp task. Kaliki RR; Davoodi R; Loeb GE IEEE Trans Biomed Eng; 2013 Mar; 60(3):792-802. PubMed ID: 22287229 [TBL] [Abstract][Full Text] [Related]
4. Stable, simultaneous and proportional 4-DoF prosthetic hand control via synergy-inspired linear interpolation: a case series. Lukyanenko P; Dewald HA; Lambrecht J; Kirsch RF; Tyler DJ; Williams MR J Neuroeng Rehabil; 2021 Mar; 18(1):50. PubMed ID: 33736656 [TBL] [Abstract][Full Text] [Related]
5. Voluntary phantom hand and finger movements in transhumerai amputees could be used to naturally control polydigital prostheses. Jarrasse N; Nicol C; Richer F; Touillet A; Martinet N; Paysant J; De Graaf JB IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1239-1245. PubMed ID: 28813991 [TBL] [Abstract][Full Text] [Related]
6. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. Kuiken TA; Li G; Lock BA; Lipschutz RD; Miller LA; Stubblefield KA; Englehart KB JAMA; 2009 Feb; 301(6):619-28. PubMed ID: 19211469 [TBL] [Abstract][Full Text] [Related]
7. Deep learning-based artificial vision for grasp classification in myoelectric hands. Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317 [TBL] [Abstract][Full Text] [Related]
8. Sensory substitution of elbow proprioception to improve myoelectric control of upper limb prosthesis: experiment on healthy subjects and amputees. Guémann M; Halgand C; Bastier A; Lansade C; Borrini L; Lapeyre É; Cattaert D; de Rugy A J Neuroeng Rehabil; 2022 Jun; 19(1):59. PubMed ID: 35690860 [TBL] [Abstract][Full Text] [Related]
9. Phantom-Mobility-Based Prosthesis Control in Transhumeral Amputees Without Surgical Reinnervation: A Preliminary Study. Jarrassé N; de Montalivet E; Richer F; Nicol C; Touillet A; Martinet N; Paysant J; de Graaf JB Front Bioeng Biotechnol; 2018; 6():164. PubMed ID: 30555823 [TBL] [Abstract][Full Text] [Related]
10. Shoulder kinematics plus contextual target information enable control of multiple distal joints of a simulated prosthetic arm and hand. Mick S; Segas E; Dure L; Halgand C; Benois-Pineau J; Loeb GE; Cattaert D; de Rugy A J Neuroeng Rehabil; 2021 Jan; 18(1):3. PubMed ID: 33407618 [TBL] [Abstract][Full Text] [Related]
11. Restoring natural upper limb movement through a wrist prosthetic module for partial hand amputees. Choi S; Cho W; Kim K J Neuroeng Rehabil; 2023 Oct; 20(1):135. PubMed ID: 37798778 [TBL] [Abstract][Full Text] [Related]
12. Upper Limb Prosthesis Control for High-Level Amputees via Myoelectric Recognition of Leg Gestures. Lyons KR; Joshi SS; Joshi SS; Lyons KR IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1056-1066. PubMed ID: 29752241 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous Control of 2DOF Upper-Limb Prosthesis With Body Compensations-Based Control: A Multiple Cases Study. Legrand M; Marchand C; Richer F; Touillet A; Martinet N; Paysant J; Morel G; Jarrasse N IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1745-1754. PubMed ID: 35749322 [TBL] [Abstract][Full Text] [Related]
14. i-MYO: A multi-grasp prosthetic hand control system based on gaze movements, augmented reality, and myoelectric signals. Shi C; Zhao J; Yang D; Jiang L Int J Med Robot; 2024 Feb; 20(1):e2617. PubMed ID: 38536731 [TBL] [Abstract][Full Text] [Related]
15. fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees. Sattar NY; Kausar Z; Usama SA; Farooq U; Shah MF; Muhammad S; Khan R; Badran M Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161473 [TBL] [Abstract][Full Text] [Related]
16. Classification of Phantom Finger, Hand, Wrist, and Elbow Voluntary Gestures in Transhumeral Amputees With sEMG. Jarrasse N; Nicol C; Touillet A; Richer F; Martinet N; Paysant J; de Graaf JB IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):68-77. PubMed ID: 27164596 [TBL] [Abstract][Full Text] [Related]
17. A bioelectric neural interface towards intuitive prosthetic control for amputees. Nguyen AT; Xu J; Jiang M; Luu DK; Wu T; Tam WK; Zhao W; Drealan MW; Overstreet CK; Zhao Q; Cheng J; Keefer EW; Yang Z J Neural Eng; 2020 Nov; 17(6):. PubMed ID: 33091891 [No Abstract] [Full Text] [Related]
18. Understanding Limb Position and External Load Effects on Real-Time Pattern Recognition Control in Amputees. Teh Y; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1605-1613. PubMed ID: 32396094 [TBL] [Abstract][Full Text] [Related]
19. Persistent hand motor commands in the amputees' brain. Reilly KT; Mercier C; Schieber MH; Sirigu A Brain; 2006 Aug; 129(Pt 8):2211-23. PubMed ID: 16799174 [TBL] [Abstract][Full Text] [Related]
20. Upbeat: Augmented Reality-Guided Dancing for Prosthetic Rehabilitation of Upper Limb Amputees. Melero M; Hou A; Cheng E; Tayade A; Lee SC; Unberath M; Navab N J Healthc Eng; 2019; 2019():2163705. PubMed ID: 31015903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]