These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37847496)

  • 1. Quantitative, precise and multi-wavelength evaluation of the light-to-heat conversion efficiency for nanoparticular photothermal agents with calibrated photoacoustic spectroscopy.
    Lucas T; Linger C; Naillon T; Hashemkhani M; Abiven L; Viana B; Chaneac C; Laurent G; Bazzi R; Roux S; Becharef S; Avveduto G; Gazeau F; Gateau J
    Nanoscale; 2023 Nov; 15(42):17085-17096. PubMed ID: 37847496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general methodology to measure the light-to-heat conversion efficiency of solid materials.
    Gu K; Zhong H
    Light Sci Appl; 2023 May; 12(1):120. PubMed ID: 37193685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the Wavelength-Dependent Photothermal Conversion Efficiency of Photosensitizers for Photothermal Therapy: Application to Ag
    Sennaroglu A; Khan M; Hashemkhani M; Yağci Acar H
    J Phys Chem B; 2021 Oct; 125(42):11650-11659. PubMed ID: 34657432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the temperature-dependent dielectric constant on the photoacoustic effect of gold nanospheres.
    Sun JP; Ren YT; Gao RX; Gao BH; He MJ; Qi H
    Phys Chem Chem Phys; 2022 Dec; 24(48):29667-29682. PubMed ID: 36453140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced photoconversion performance of NdVO
    Chang M; Wang M; Shu M; Zhao Y; Ding B; Huang S; Hou Z; Han G; Lin J
    Acta Biomater; 2019 Nov; 99():295-306. PubMed ID: 31437636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymerization-induced photothermy: A non-donor-acceptor approach to highly effective near-infrared photothermal conversion nanoparticles.
    Jiang Y; Duan X; Bai J; Tian H; Ding D; Geng Y
    Biomaterials; 2020 Oct; 255():120179. PubMed ID: 32562945
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Cao Y; Chen Z; Ran H
    Nanoscale; 2022 Aug; 14(33):12069-12076. PubMed ID: 35947015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting the photothermal performance of vacancy-rich MoSe
    Gao F; Miao Y; Ma H; Zhang T; Fan H; Zhao L
    Nanoscale; 2021 Sep; 13(35):14960-14972. PubMed ID: 34533549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-responsive Ag
    Zhong Y; Zou Y; Liu L; Li R; Xue F; Yi T
    Acta Biomater; 2020 Oct; 115():358-370. PubMed ID: 32798720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer nanoparticles with high photothermal conversion efficiency as robust photoacoustic and thermal theranostics.
    Guo L; Liu W; Niu G; Zhang P; Zheng X; Jia Q; Zhang H; Ge J; Wang P
    J Mater Chem B; 2017 Apr; 5(15):2832-2839. PubMed ID: 32264170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal near-infrared-emitting PluS Silica nanoparticles with fluorescent, photoacoustic, and photothermal capabilities.
    Biffi S; Petrizza L; Garrovo C; Rampazzo E; Andolfi L; Giustetto P; Nikolov I; Kurdi G; Danailov MB; Zauli G; Secchiero P; Prodi L
    Int J Nanomedicine; 2016; 11():4865-4874. PubMed ID: 27703352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Liquid Gallium@Reduced Graphene Oxide Core-Shell Nanoparticles with Enhanced Photoacoustic and Photothermal Performance.
    Zhang Y; Guo Z; Zhu H; Xing W; Tao P; Shang W; Fu B; Song C; Hong Y; Dickey MD; Deng T
    J Am Chem Soc; 2022 Apr; 144(15):6779-6790. PubMed ID: 35293736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron Oxide Nanoflowers @ CuS Hybrids for Cancer Tri-Therapy: Interplay of Photothermal Therapy, Magnetic Hyperthermia and Photodynamic Therapy.
    Curcio A; Silva AKA; Cabana S; Espinosa A; Baptiste B; Menguy N; Wilhelm C; Abou-Hassan A
    Theranostics; 2019; 9(5):1288-1302. PubMed ID: 30867831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical and in vivo investigations of morphology and concentration of gold nanoparticles for laser surgery.
    Xing L; Li D; Chen B; Gan H; Zhong Y
    Lasers Surg Med; 2022 Mar; 54(3):433-446. PubMed ID: 34605557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational analysis of drug free silver triangular nanoprism theranostic probe plasmonic behavior for in-situ tumor imaging and photothermal therapy.
    Mondal S; Montaño-Priede JL; Nguyen VT; Park S; Choi J; Doan VHM; Vo TMT; Vo TH; Large N; Kim CS; Oh J
    J Adv Res; 2022 Nov; 41():23-38. PubMed ID: 36328751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the photothermal conversion efficiency of gold nanocrystals.
    Chen H; Shao L; Ming T; Sun Z; Zhao C; Yang B; Wang J
    Small; 2010 Oct; 6(20):2272-80. PubMed ID: 20827680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Comparison of the Light-to-Heat Conversion Efficiency in Nanomaterials Suitable for Photothermal Therapy.
    Paściak A; Marin R; Abiven L; Pilch-Wróbel A; Misiak M; Xu W; Prorok K; Bezkrovnyi O; Marciniak Ł; Chanéac C; Gazeau F; Bazzi R; Roux S; Viana B; Lehto VP; Jaque D; Bednarkiewicz A
    ACS Appl Mater Interfaces; 2022 Jul; 14(29):33555-66. PubMed ID: 35848997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Antenna-Sensitized Upconversion Nanoparticle for Temperature Monitored Precision Photothermal Therapy.
    Wei Y; Liu S; Pan C; Yang Z; Liu Y; Yong J; Quan L
    Int J Nanomedicine; 2020; 15():1409-1420. PubMed ID: 32184595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoacoustic thermal diffusion flowmetry.
    Sheinfeld A; Eyal A
    Biomed Opt Express; 2012 Apr; 3(4):800-13. PubMed ID: 22574267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional Cu-Ag
    Dong L; Ji G; Liu Y; Xu X; Lei P; Du K; Song S; Feng J; Zhang H
    Nanoscale; 2018 Jan; 10(2):825-831. PubMed ID: 29260827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.