These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 37847729)

  • 1. Vestibular CCK signaling drives motion sickness-like behavior in mice.
    Machuca-Márquez P; Sánchez-Benito L; Menardy F; Urpi A; Girona M; Puighermanal E; Appiah I; Palmiter RD; Sanz E; Quintana A
    Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2304933120. PubMed ID: 37847729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of visceral inputs on the processing of labyrinthine signals by the inferior and caudal medial vestibular nuclei: ramifications for the production of motion sickness.
    Arshian MS; Puterbaugh SR; Miller DJ; Catanzaro MF; Hobson CE; McCall AA; Yates BJ
    Exp Brain Res; 2013 Jul; 228(3):353-63. PubMed ID: 23712685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of vestibular and hindlimb inputs by vestibular nucleus neurons: multisensory influences on postural control.
    McCall AA; Miller DM; Balaban CD
    J Neurophysiol; 2021 Apr; 125(4):1095-1110. PubMed ID: 33534649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamatergic vestibular neurons express Fos after vestibular stimulation and project to the NTS and the PBN in rats.
    Cai YL; Ma WL; Li M; Guo JS; Li YQ; Wang LG; Wang WZ
    Neurosci Lett; 2007 May; 417(2):132-7. PubMed ID: 17412503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neural basis of motion sickness.
    Cohen B; Dai M; Yakushin SB; Cho C
    J Neurophysiol; 2019 Mar; 121(3):973-982. PubMed ID: 30699041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of vestibular and gastrointestinal inputs by cerebellar fastigial nucleus neurons: multisensory influences on motion sickness.
    Catanzaro MF; Miller DJ; Cotter LA; McCall AA; Yates BJ
    Exp Brain Res; 2014 Aug; 232(8):2581-9. PubMed ID: 24677139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of neural networks that contribute to motion sickness through principal components analysis of fos labeling induced by galvanic vestibular stimulation.
    Balaban CD; Ogburn SW; Warshafsky SG; Ahmed A; Yates BJ
    PLoS One; 2014; 9(1):e86730. PubMed ID: 24466215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AVP modulation of the vestibular nucleus via V1b receptors potentially contributes to the development of motion sickness in rat.
    Xu LH; Tang GR; Yang JJ; Liu HX; Li JC; Jiang ZL
    Mol Brain; 2015 Dec; 8():86. PubMed ID: 26651338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vestibular convergence patterns in vestibular nuclei neurons of alert primates.
    Dickman JD; Angelaki DE
    J Neurophysiol; 2002 Dec; 88(6):3518-33. PubMed ID: 12466465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology.
    Oman CM; Cullen KE
    Exp Brain Res; 2014 Aug; 232(8):2483-92. PubMed ID: 24838552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vestibular neurons with direct projections to the solitary nucleus in the rat.
    Gagliuso AH; Chapman EK; Martinelli GP; Holstein GR
    J Neurophysiol; 2019 Aug; 122(2):512-524. PubMed ID: 31166818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal integration in rostral fastigial nucleus provides an estimate of body movement.
    Brooks JX; Cullen KE
    J Neurosci; 2009 Aug; 29(34):10499-511. PubMed ID: 19710303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vestibular nucleus neurons respond to hindlimb movement in the conscious cat.
    McCall AA; Miller DM; DeMayo WM; Bourdages GH; Yates BJ
    J Neurophysiol; 2016 Oct; 116(4):1785-1794. PubMed ID: 27440244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of nonlabyrinthine inputs by the vestibular system: role in compensation following bilateral damage to the inner ear.
    Yates BJ; Miller DM
    J Vestib Res; 2009; 19(5-6):183-9. PubMed ID: 20495235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fos induction in the amygdala by vestibular information during hypergravity stimulation.
    Nakagawa A; Uno A; Horii A; Kitahara T; Kawamoto M; Uno Y; Fukushima M; Nishiike S; Takeda N; Kubo T
    Brain Res; 2003 Oct; 986(1-2):114-23. PubMed ID: 12965235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of neural correlates of linear motion in the rat vestibular nucleus.
    Ma CW; Lai CH; Han L; De Nogueira Botelho FP; Shum DK; Chan YS
    Sheng Li Xue Bao; 2014 Feb; 66(1):37-46. PubMed ID: 24553868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective processing of vestibular reafference during self-generated head motion.
    Roy JE; Cullen KE
    J Neurosci; 2001 Mar; 21(6):2131-42. PubMed ID: 11245697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low level of swiprosin-1/EFhd2 in vestibular nuclei of spontaneously hypersensitive motion sickness mice.
    Wang ZB; Han P; Tong LC; Luo Y; Su WH; Wei X; Yu XH; Liu WY; Zhang XH; Lei H; Li ZZ; Wang F; Chen JG; Ma TH; Su DF; Li L
    Sci Rep; 2017 Jan; 7():40986. PubMed ID: 28128226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological correlations between spontaneously discharging primary vestibular afferents and vestibular nucleus neurons in the cat.
    Sato F; Sasaki H
    J Comp Neurol; 1993 Jul; 333(4):554-66. PubMed ID: 8370817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multisensory integration in early vestibular processing in mice: the encoding of passive vs. active motion.
    Medrea I; Cullen KE
    J Neurophysiol; 2013 Dec; 110(12):2704-17. PubMed ID: 24089394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.