These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37847755)

  • 21. SGPPI: structure-aware prediction of protein-protein interactions in rigorous conditions with graph convolutional network.
    Huang Y; Wuchty S; Zhou Y; Zhang Z
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36682013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function.
    Boadu F; Cao H; Cheng J
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prior knowledge facilitates low homologous protein secondary structure prediction with DSM distillation.
    Wang Q; Wei J; Zhou Y; Lin M; Ren R; Wang S; Cui S; Li Z
    Bioinformatics; 2022 Jul; 38(14):3574-3581. PubMed ID: 35652719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expectation pooling: an effective and interpretable pooling method for predicting DNA-protein binding.
    Luo X; Tu X; Ding Y; Gao G; Deng M
    Bioinformatics; 2020 Mar; 36(5):1405-1412. PubMed ID: 31598637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. xCAPT5: protein-protein interaction prediction using deep and wide multi-kernel pooling convolutional neural networks with protein language model.
    Dang TH; Vu TA
    BMC Bioinformatics; 2024 Mar; 25(1):106. PubMed ID: 38461247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GraphGPSM: a global scoring model for protein structure using graph neural networks.
    He G; Liu J; Liu D; Zhang G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37317619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of protein-protein interaction using graph neural networks.
    Jha K; Saha S; Singh H
    Sci Rep; 2022 May; 12(1):8360. PubMed ID: 35589837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of plant vacuole proteins by using graph neural network and contact maps.
    Sui J; Chen J; Chen Y; Iwamori N; Sun J
    BMC Bioinformatics; 2023 Sep; 24(1):357. PubMed ID: 37740195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
    Fukuda H; Tomii K
    BMC Bioinformatics; 2020 Jan; 21(1):10. PubMed ID: 31918654
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences.
    Tsubaki M; Tomii K; Sese J
    Bioinformatics; 2019 Jan; 35(2):309-318. PubMed ID: 29982330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations.
    Wang J; Liu X; Shen S; Deng L; Liu H
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AlphaFold2-aware protein-DNA binding site prediction using graph transformer.
    Yuan Q; Chen S; Rao J; Zheng S; Zhao H; Yang Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. End-to-End Protein Normal Mode Frequency Predictions Using Language and Graph Models and Application to Sonification.
    Hu Y; Buehler MJ
    ACS Nano; 2022 Dec; 16(12):20656-20670. PubMed ID: 36416536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unsupervised protein embeddings outperform hand-crafted sequence and structure features at predicting molecular function.
    Villegas-Morcillo A; Makrodimitris S; van Ham RCHJ; Gomez AM; Sanchez V; Reinders MJT
    Bioinformatics; 2021 Apr; 37(2):162-170. PubMed ID: 32797179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TransEFVP: A Two-Stage Approach for the Prediction of Human Pathogenic Variants Based on Protein Sequence Embedding Fusion.
    Yan Z; Ge F; Liu Y; Zhang Y; Li F; Song J; Yu DJ
    J Chem Inf Model; 2024 Feb; 64(4):1407-1418. PubMed ID: 38334115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EquiPNAS: improved protein-nucleic acid binding site prediction using protein-language-model-informed equivariant deep graph neural networks.
    Roche R; Moussad B; Shuvo MH; Tarafder S; Bhattacharya D
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ligand binding affinity prediction with fusion of graph neural networks and 3D structure-based complex graph.
    Dong L; Shi S; Qu X; Luo D; Wang B
    Phys Chem Chem Phys; 2023 Sep; 25(35):24110-24120. PubMed ID: 37655493
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-aware protein self-supervised learning.
    Chen CS; Zhou J; Wang F; Liu X; Dou D
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37052532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.