BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37847775)

  • 41. End-to-end learning of multiple sequence alignments with differentiable Smith-Waterman.
    Petti S; Bhattacharya N; Rao R; Dauparas J; Thomas N; Zhou J; Rush AM; Koo P; Ovchinnikov S
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36355460
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evolutionary rates at codon sites may be used to align sequences and infer protein domain function.
    Durand PM; Hazelhurst S; Coetzer TL
    BMC Bioinformatics; 2010 Mar; 11():151. PubMed ID: 20334658
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
    Fukuda H; Tomii K
    BMC Bioinformatics; 2020 Jan; 21(1):10. PubMed ID: 31918654
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PROMALS: towards accurate multiple sequence alignments of distantly related proteins.
    Pei J; Grishin NV
    Bioinformatics; 2007 Apr; 23(7):802-8. PubMed ID: 17267437
    [TBL] [Abstract][Full Text] [Related]  

  • 45. TPMA: A two pointers meta-alignment tool to ensemble different multiple nucleic acid sequence alignments.
    Zhai Y; Chao J; Wang Y; Zhang P; Tang F; Zou Q
    PLoS Comput Biol; 2024 Apr; 20(4):e1011988. PubMed ID: 38557416
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DAMA: a method for computing multiple alignments of protein structures using local structure descriptors.
    Daniluk P; Oleniecki T; Lesyng B
    Bioinformatics; 2021 Dec; 38(1):80-85. PubMed ID: 34396393
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Model-based prediction of sequence alignment quality.
    Ahola V; Aittokallio T; Vihinen M; Uusipaikka E
    Bioinformatics; 2008 Oct; 24(19):2165-71. PubMed ID: 18678587
    [TBL] [Abstract][Full Text] [Related]  

  • 48. OXBench: a benchmark for evaluation of protein multiple sequence alignment accuracy.
    Raghava GP; Searle SM; Audley PC; Barber JD; Barton GJ
    BMC Bioinformatics; 2003 Oct; 4():47. PubMed ID: 14552658
    [TBL] [Abstract][Full Text] [Related]  

  • 49. COFFEE: an objective function for multiple sequence alignments.
    Notredame C; Holm L; Higgins DG
    Bioinformatics; 1998 Jun; 14(5):407-22. PubMed ID: 9682054
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the quality of tree-based protein classification.
    Lazareva-Ulitsky B; Diemer K; Thomas PD
    Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using de novo protein structure predictions to measure the quality of very large multiple sequence alignments.
    Fox G; Sievers F; Higgins DG
    Bioinformatics; 2016 Mar; 32(6):814-20. PubMed ID: 26568625
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SAlign-a structure aware method for global PPI network alignment.
    Ayub U; Haider I; Naveed H
    BMC Bioinformatics; 2020 Nov; 21(1):500. PubMed ID: 33148180
    [TBL] [Abstract][Full Text] [Related]  

  • 53. INTREPID--INformation-theoretic TREe traversal for Protein functional site IDentification.
    Sankararaman S; Sjölander K
    Bioinformatics; 2008 Nov; 24(21):2445-52. PubMed ID: 18776193
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Estimates of statistical significance for comparison of individual positions in multiple sequence alignments.
    Sadreyev RI; Grishin NV
    BMC Bioinformatics; 2004 Aug; 5():106. PubMed ID: 15296518
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Obtaining extremely large and accurate protein multiple sequence alignments from curated hierarchical alignments.
    Neuwald AF; Lanczycki CJ; Hodges TK; Marchler-Bauer A
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 32500917
    [TBL] [Abstract][Full Text] [Related]  

  • 56. M2Align: parallel multiple sequence alignment with a multi-objective metaheuristic.
    Zambrano-Vega C; Nebro AJ; García-Nieto J; Aldana-Montes JF
    Bioinformatics; 2017 Oct; 33(19):3011-3017. PubMed ID: 28541404
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs.
    Várnai C; Burkoff NS; Wild DL
    PLoS One; 2017; 12(2):e0169356. PubMed ID: 28166227
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of a database of structural alignments and phylogenetic trees in investigating the relationship between sequence and structural variability among homologous proteins.
    Balaji S; Srinivasan N
    Protein Eng; 2001 Apr; 14(4):219-26. PubMed ID: 11391013
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ICARUS: flexible protein structural alignment based on Protein Units.
    Cretin G; Périn C; Zimmermann N; Galochkina T; Gelly JC
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37498544
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Context similarity scoring improves protein sequence alignments in the midnight zone.
    Meier A; Söding J
    Bioinformatics; 2015 Mar; 31(5):674-81. PubMed ID: 25338715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.