These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37848061)

  • 1. Reinforcement-based processes actively regulate motor exploration along redundant solution manifolds.
    Roth AM; Calalo JA; Lokesh R; Sullivan SR; Grill S; Jeka JJ; van der Kooij K; Carter MJ; Cashaback JGA
    Proc Biol Sci; 2023 Oct; 290(2009):20231475. PubMed ID: 37848061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles and interplay of reinforcement-based and error-based processes during reaching and gait in neurotypical adults and individuals with Parkinson's disease.
    Roth AM; Buggeln JH; Hoh JE; Wood JM; Sullivan SR; Ngo TT; Calalo JA; Lokesh R; Morton SM; Grill S; Jeka JJ; Carter MJ; Cashaback JGA
    PLoS Comput Biol; 2024 Oct; 20(10):e1012474. PubMed ID: 39401183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between motor exploration and reinforcement learning.
    Uehara S; Mawase F; Therrien AS; Cherry-Allen KM; Celnik P
    J Neurophysiol; 2019 Aug; 122(2):797-808. PubMed ID: 31242063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering analysis of movement kinematics in reinforcement learning.
    Sidarta A; Komar J; Ostry DJ
    J Neurophysiol; 2022 Feb; 127(2):341-353. PubMed ID: 34936514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Variation in Error-Based and Reinforcement Motor Learning Is Associated With Entorhinal Volume.
    de Brouwer AJ; Areshenkoff CN; Rashid MR; Flanagan JR; Poppenk J; Gallivan JP
    Cereb Cortex; 2022 Aug; 32(16):3423-3440. PubMed ID: 34963128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability.
    Wu HG; Miyamoto YR; Gonzalez Castro LN; Ölveczky BP; Smith MA
    Nat Neurosci; 2014 Feb; 17(2):312-21. PubMed ID: 24413700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Somatic and Reinforcement-Based Plasticity in the Initial Stages of Human Motor Learning.
    Sidarta A; Vahdat S; Bernardi NF; Ostry DJ
    J Neurosci; 2016 Nov; 36(46):11682-11692. PubMed ID: 27852776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Variability in Motor Learning.
    Dhawale AK; Smith MA; Ölveczky BP
    Annu Rev Neurosci; 2017 Jul; 40():479-498. PubMed ID: 28489490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement Learning during Locomotion.
    Wood JM; Kim HE; Morton SM
    eNeuro; 2024 Mar; 11(3):. PubMed ID: 38438263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.
    Chadderdon GL; Neymotin SA; Kerr CC; Lytton WW
    PLoS One; 2012; 7(10):e47251. PubMed ID: 23094042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reward-based learning of a redundant task.
    Tamagnone I; Casadio M; Sanguineti V
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650386. PubMed ID: 24187205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor Learning Enhances Use-Dependent Plasticity.
    Mawase F; Uehara S; Bastian AJ; Celnik P
    J Neurosci; 2017 Mar; 37(10):2673-2685. PubMed ID: 28143961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dorsomedial frontal cortex damage impairs error-based, but not reinforcement-based motor learning in humans.
    Palidis DJ; Fellows LK
    Cereb Cortex; 2024 Jan; 34(1):. PubMed ID: 37955674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Null effects of levodopa on reward- and error-based motor adaptation, savings, and anterograde interference.
    Palidis DJ; McGregor HR; Vo A; MacDonald PA; Gribble PL
    J Neurophysiol; 2021 Jul; 126(1):47-67. PubMed ID: 34038228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Punishment Leads to Greater Sensorimotor Learning But Less Movement Variability Compared to Reward.
    Roth AM; Lokesh R; Tang J; Buggeln JH; Smith C; Calalo JA; Sullivan SR; Ngo T; Germain LS; Carter MJ; Cashaback JGA
    Neuroscience; 2024 Mar; 540():12-26. PubMed ID: 38220127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of reward and punishment on reinforcement-based motor learning and generalization.
    Yin C; Li B; Gao T
    J Neurophysiol; 2023 Nov; 130(5):1150-1161. PubMed ID: 37791387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain-Specific Working Memory, But Not Dopamine-Related Genetic Variability, Shapes Reward-Based Motor Learning.
    Holland P; Codol O; Oxley E; Taylor M; Hamshere E; Joseph S; Huffer L; Galea JM
    J Neurosci; 2019 Nov; 39(47):9383-9396. PubMed ID: 31604835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The gradient of the reinforcement landscape influences sensorimotor learning.
    Cashaback JGA; Lao CK; Palidis DJ; Coltman SK; McGregor HR; Gribble PL
    PLoS Comput Biol; 2019 Mar; 15(3):e1006839. PubMed ID: 30830902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reach adaption to a visuomotor gain with terminal error feedback involves reinforcement learning.
    Ikegami T; Flanagan JR; Wolpert DM
    PLoS One; 2022; 17(6):e0269297. PubMed ID: 35648778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise.
    Therrien AS; Wolpert DM; Bastian AJ
    Brain; 2016 Jan; 139(Pt 1):101-14. PubMed ID: 26626368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.