These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37848142)

  • 21. Long-term field performance of a conventional and modified bioretention system for removing dissolved nitrogen species in stormwater runoff.
    Lopez-Ponnada EV; Lynn TJ; Ergas SJ; Mihelcic JR
    Water Res; 2020 Mar; 170():115336. PubMed ID: 31841771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrogen removal performance in roadside stormwater bioretention cells amended with drinking water treatment residuals.
    Betz C; Ament MR; Hurley SE; Roy ED
    J Environ Qual; 2023; 52(6):1115-1126. PubMed ID: 37573476
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineered bioretention for removal of nitrate from stormwater runoff.
    Kim H; Seagren EA; Davis AP
    Water Environ Res; 2003; 75(4):355-67. PubMed ID: 12934829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification effects of amended bioretention columns on phosphorus in urban rainfall runoff.
    Li J; Li L; Dong W; Li H
    Water Sci Technol; 2018 Dec; 78(9):1937-1945. PubMed ID: 30566097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nutrient, Metal, and Organics Removal from Stormwater Using a Range of Bioretention Soil Mixtures.
    Jay JG; Tyler-Plog M; Brown SL; Grothkopp F
    J Environ Qual; 2019 Mar; 48(2):493-501. PubMed ID: 30951121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydraulic and nutrient removal performance of vegetated filter strips with engineered infiltration media for treatment of roadway runoff.
    Shokri M; Kibler KM; Hagglund C; Corrado A; Wang D; Beazley M; Wanielista M
    J Environ Manage; 2021 Dec; 300():113747. PubMed ID: 34649328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochar amendment of stormwater bioretention systems for nitrogen and Escherichia coli removal: Effect of hydraulic loading rates and antecedent dry periods.
    Rahman MYA; Nachabe MH; Ergas SJ
    Bioresour Technol; 2020 Aug; 310():123428. PubMed ID: 32361647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal speciation in stormwater bioretention: Removal of particulate, colloidal and truly dissolved metals.
    Lange K; Österlund H; Viklander M; Blecken GT
    Sci Total Environ; 2020 Jul; 724():138121. PubMed ID: 32247141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing nitrate and phosphorus removal from stormwater in a fold-flow bioretention system with saturated zones.
    Yang R; Zheng-Rong F; Man-Ying M; Xian L
    Water Sci Technol; 2021 Oct; 84(8):2079-2092. PubMed ID: 34695032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coal gangue modified bioretention system for runoff pollutants removal and the biological characteristics.
    Zhang H; Zhang X; Liu J; Zhang L; Li G; Zhang Z; Gong Y; Li H; Li J
    J Environ Manage; 2022 Jul; 314():115044. PubMed ID: 35427943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance characterisation of a stormwater treatment bioretention basin.
    Mangangka IR; Liu A; Egodawatta P; Goonetilleke A
    J Environ Manage; 2015 Mar; 150():173-178. PubMed ID: 25490107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Urban Runoff Phosphorus Removal Pathways in Bioretention Systems].
    Li LQ; Liu YQ; Yang JM; Wang J
    Huan Jing Ke Xue; 2018 Jul; 39(7):3150-3157. PubMed ID: 29962138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fate of naphthalene in laboratory-scale bioretention cells: implications for sustainable stormwater management.
    Lefevre GH; Novak PJ; Hozalski RM
    Environ Sci Technol; 2012 Jan; 46(2):995-1002. PubMed ID: 22175538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioretention cells under cold climate conditions: Effects of freezing and thawing on water infiltration, soil structure, and nutrient removal.
    Ding B; Rezanezhad F; Gharedaghloo B; Van Cappellen P; Passeport E
    Sci Total Environ; 2019 Feb; 649():749-759. PubMed ID: 30176485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accumulation of high-molecular-weight polycyclic aromatic hydrocarbon impacted the performance and microbial ecology of bioretention systems.
    Chai G; Wang D; Shan J; Jiang C; Yang Z; Liu E; Meng H; Wang H; Wang Z; Qin L; Xi J; Ma Y; Li H; Qian Y; Li J; Lin Y
    Chemosphere; 2022 Jul; 298():134314. PubMed ID: 35292274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple-event study of bioretention for treatment of urban storm water runoff.
    Hsieh CH; Davis AP
    Water Sci Technol; 2005; 51(3-4):177-81. PubMed ID: 15850188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nutrients and solids removal in bioretention columns using recycled materials under intermittent and frequent flow operations.
    Alam T; Bezares-Cruz JC; Mahmoud A; Jones KD
    J Environ Manage; 2021 Nov; 297():113321. PubMed ID: 34303939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seasonal performance of field bioretention systems in retaining phosphorus in a cold climate: Influence of prolonged road salt application.
    Goor J; Cantelon J; Smart CC; Robinson CE
    Sci Total Environ; 2021 Jul; 778():146069. PubMed ID: 33714832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff.
    Ashoori N; Teixido M; Spahr S; LeFevre GH; Sedlak DL; Luthy RG
    Water Res; 2019 May; 154():1-11. PubMed ID: 30763870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cadmium removal from urban stormwater runoff via bioretention technology and effluent risk assessment for discharge to surface water.
    Wang J; Zhang P; Yang L; Huang T
    J Contam Hydrol; 2016; 185-186():42-50. PubMed ID: 26826541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.