These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37848162)

  • 1. Personalized 3D printed scaffolds: The ethical aspects.
    van Daal M; de Kanter AJ; Bredenoord AL; de Graeff N
    N Biotechnol; 2023 Dec; 78():116-122. PubMed ID: 37848162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration.
    Metz C; Duda GN; Checa S
    Acta Biomater; 2020 Jan; 101():117-127. PubMed ID: 31669697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Personalized 3D printed bone scaffolds: A review.
    Mirkhalaf M; Men Y; Wang R; No Y; Zreiqat H
    Acta Biomater; 2023 Jan; 156():110-124. PubMed ID: 35429670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoregenerative Potential of 3D-Printed Poly
    Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review.
    de Kanter AJ; Jongsma KR; Verhaar MC; Bredenoord AL
    Tissue Eng Part B Rev; 2023 Apr; 29(2):167-187. PubMed ID: 36112697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Personalized Volumetric Tissue Generation by Enhancing Multiscale Mass Transport through 3D Printed Scaffolds in Perfused Bioreactors.
    Forrestal DP; Allenby MC; Simpson B; Klein TJ; Woodruff MA
    Adv Healthc Mater; 2022 Dec; 11(24):e2200454. PubMed ID: 35765715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Personalized 3D-Printed Scaffolds with Multiple Bioactivities for Bioroot Regeneration.
    Huang Y; Zhang Z; Bi F; Tang H; Chen J; Huo F; Chen J; Lan T; Qiao X; Sima X; Guo W
    Adv Healthc Mater; 2023 Nov; 12(28):e2300625. PubMed ID: 37523260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.
    Hung KC; Tseng CS; Dai LG; Hsu SH
    Biomaterials; 2016 Mar; 83():156-68. PubMed ID: 26774563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of 3D Printing Technology in Bone Tissue Engineering: A Review.
    Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S
    Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants.
    Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D
    Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in the Design of Three-Dimensional and Bioprinted Scaffolds for Full-Thickness Wound Healing.
    Tan SH; Ngo ZH; Sci DB; Leavesley D; Liang K
    Tissue Eng Part B Rev; 2022 Feb; 28(1):160-181. PubMed ID: 33446047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printing of Scaffolds for Tissue Regeneration Applications.
    Do AV; Khorsand B; Geary SM; Salem AK
    Adv Healthc Mater; 2015 Aug; 4(12):1742-62. PubMed ID: 26097108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-Printed Sensors and Actuators in Cell Culture and Tissue Engineering: Framework and Research Challenges.
    PĂ©rez P; Serrano JA; Olmo A
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of scaffold design on 3D printed cell constructs.
    Souness A; Zamboni F; Walker GM; Collins MN
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):533-545. PubMed ID: 28194931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants.
    Wu L; Virdee J; Maughan E; Darbyshire A; Jell G; Loizidou M; Emberton M; Butler P; Howkins A; Reynolds A; Boyd IW; Birchall M; Song W
    Acta Biomater; 2018 Oct; 80():188-202. PubMed ID: 30223094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.