These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 37849024)
1. R-loops act as regulatory switches modulating transcription of COLD-responsive genes in rice. He Z; Li M; Pan X; Peng Y; Shi Y; Han Q; Shi M; She L; Borovskii G; Chen X; Gu X; Cheng X; Zhang W New Phytol; 2024 Jan; 241(1):267-282. PubMed ID: 37849024 [TBL] [Abstract][Full Text] [Related]
2. Cold-responsive transcription factors in Arabidopsis and rice: A regulatory network analysis using array data and gene co-expression network. Edrisi Maryan K; Farrokhi N; Samizadeh Lahiji H PLoS One; 2023; 18(6):e0286324. PubMed ID: 37289769 [TBL] [Abstract][Full Text] [Related]
3. Characterization of functional relationships of R-loops with gene transcription and epigenetic modifications in rice. Fang Y; Chen L; Lin K; Feng Y; Zhang P; Pan X; Sanders J; Wu Y; Wang XE; Su Z; Chen C; Wei H; Zhang W Genome Res; 2019 Aug; 29(8):1287-1297. PubMed ID: 31262943 [TBL] [Abstract][Full Text] [Related]
4. The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis. Deng C; Ye H; Fan M; Pu T; Yan J Plant Signal Behav; 2017 May; 12(5):e1316442. PubMed ID: 28414264 [TBL] [Abstract][Full Text] [Related]
5. Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway. Mao D; Chen C PLoS One; 2012; 7(10):e47275. PubMed ID: 23077584 [TBL] [Abstract][Full Text] [Related]
6. Dynamicity of histone H3K27ac and H3K27me3 modifications regulate the cold-responsive gene expression in Oryza sativa L. ssp. indica. Dasgupta P; Prasad P; Bag SK; Chaudhuri S Genomics; 2022 Jul; 114(4):110433. PubMed ID: 35863676 [TBL] [Abstract][Full Text] [Related]
7. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. Byun MY; Lee J; Cui LH; Kang Y; Oh TK; Park H; Lee H; Kim WT Plant Sci; 2015 Jul; 236():61-74. PubMed ID: 26025521 [TBL] [Abstract][Full Text] [Related]
8. Huang P; Ding Z; Duan M; Xiong Y; Li X; Yuan X; Huang J Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047700 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide analysis of Dof transcription factors and their response to cold stress in rice (Oryza sativa L.). Liu J; Meng Q; Xiang H; Shi F; Ma L; Li Y; Liu C; Liu Y; Su B BMC Genomics; 2021 Nov; 22(1):800. PubMed ID: 34742240 [TBL] [Abstract][Full Text] [Related]
10. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Ito Y; Katsura K; Maruyama K; Taji T; Kobayashi M; Seki M; Shinozaki K; Yamaguchi-Shinozaki K Plant Cell Physiol; 2006 Jan; 47(1):141-53. PubMed ID: 16284406 [TBL] [Abstract][Full Text] [Related]
11. Integrated ATAC-Seq and RNA-Seq Data Analysis to Reveal Qiu F; Zheng Y; Lin Y; Woldegiorgis ST; Xu S; Feng C; Huang G; Shen H; Xu Y; Kabore MAF; Ai Y; Liu W; He H Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982696 [TBL] [Abstract][Full Text] [Related]
12. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. Pradhan SK; Pandit E; Nayak DK; Behera L; Mohapatra T BMC Plant Biol; 2019 Aug; 19(1):352. PubMed ID: 31412781 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance. Chung PJ; Jung H; Choi YD; Kim JK BMC Genomics; 2018 Jan; 19(1):40. PubMed ID: 29329517 [TBL] [Abstract][Full Text] [Related]
14. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. Huang L; Hong Y; Zhang H; Li D; Song F BMC Plant Biol; 2016 Sep; 16(1):203. PubMed ID: 27646344 [TBL] [Abstract][Full Text] [Related]
15. Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. Maruyama K; Todaka D; Mizoi J; Yoshida T; Kidokoro S; Matsukura S; Takasaki H; Sakurai T; Yamamoto YY; Yoshiwara K; Kojima M; Sakakibara H; Shinozaki K; Yamaguchi-Shinozaki K DNA Res; 2012; 19(1):37-49. PubMed ID: 22184637 [TBL] [Abstract][Full Text] [Related]
16. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Hu H; You J; Fang Y; Zhu X; Qi Z; Xiong L Plant Mol Biol; 2008 May; 67(1-2):169-81. PubMed ID: 18273684 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies. Shin SY; Jeong JS; Lim JY; Kim T; Park JH; Kim JK; Shin C BMC Genomics; 2018 Jul; 19(1):532. PubMed ID: 30005603 [TBL] [Abstract][Full Text] [Related]
18. Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. Shrestha R; Gómez-Ariza J; Brambilla V; Fornara F Ann Bot; 2014 Nov; 114(7):1445-58. PubMed ID: 24651369 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide analysis of the complex transcriptional networks of rice developing seeds. Xue LJ; Zhang JJ; Xue HW PLoS One; 2012; 7(2):e31081. PubMed ID: 22363552 [TBL] [Abstract][Full Text] [Related]
20. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Dubouzet JG; Sakuma Y; Ito Y; Kasuga M; Dubouzet EG; Miura S; Seki M; Shinozaki K; Yamaguchi-Shinozaki K Plant J; 2003 Feb; 33(4):751-63. PubMed ID: 12609047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]