These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37849115)

  • 1. Pilot-wave dynamics: Using dynamic mode decomposition to characterize bifurcations, routes to chaos, and emergent statistics.
    Kutz JN; Nachbin A; Baddoo PJ; Bush JWM
    Phys Rev E; 2023 Sep; 108(3-1):034213. PubMed ID: 37849115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics, emergent statistics, and the mean-pilot-wave potential of walking droplets.
    Durey M; Milewski PA; Bush JWM
    Chaos; 2018 Sep; 28(9):096108. PubMed ID: 30278646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifurcations and chaos in a Lorenz-like pilot-wave system.
    Durey M
    Chaos; 2020 Oct; 30(10):103115. PubMed ID: 33138446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. State space geometry of the chaotic pilot-wave hydrodynamics.
    Budanur NB; Fleury M
    Chaos; 2019 Jan; 29(1):013122. PubMed ID: 30709150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pilot-wave dynamics of two identical, in-phase bouncing droplets.
    Valani RN; Slim AC
    Chaos; 2018 Sep; 28(9):096114. PubMed ID: 30278618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic quantum analogs.
    Bush JWM; Oza AU
    Rep Prog Phys; 2020 Dec; 84(1):. PubMed ID: 33065567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introduction to focus issue on hydrodynamic quantum analogs.
    Bush JWM; Couder Y; Gilet T; Milewski PA; Nachbin A
    Chaos; 2018 Sep; 28(9):096001. PubMed ID: 30278632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classical pilot-wave dynamics: The free particle.
    Durey M; Bush JWM
    Chaos; 2021 Mar; 31(3):033136. PubMed ID: 33810713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics and statistics of wave-particle interactions in a confined geometry.
    Gilet T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052917. PubMed ID: 25493868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal chaos stimulated by transverse Hopf instabilities in an optical bilayer system.
    Paulau PV; Babushkin IV; Loiko NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046222. PubMed ID: 15600510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaos driven by interfering memory.
    Perrard S; Labousse M; Fort E; Couder Y
    Phys Rev Lett; 2014 Sep; 113(10):104101. PubMed ID: 25238360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The onset of chaos in orbital pilot-wave dynamics.
    Tambasco LD; Harris DM; Oza AU; Rosales RR; Bush JW
    Chaos; 2016 Oct; 26(10):103107. PubMed ID: 27802677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hydrodynamic analog of Friedel oscillations.
    Sáenz PJ; Cristea-Platon T; Bush JWM
    Sci Adv; 2020 May; 6(20):eaay9234. PubMed ID: 32440541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bagging, optimized dynamic mode decomposition for robust, stable forecasting with spatial and temporal uncertainty quantification.
    Sashidhar D; Kutz JN
    Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2229):20210199. PubMed ID: 35719072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speed oscillations in classical pilot-wave dynamics.
    Durey M; Turton SE; Bush JWM
    Proc Math Phys Eng Sci; 2020 Jul; 476(2239):20190884. PubMed ID: 32831603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infinite-memory classical wave-particle entities, attractor-driven active particles, and the diffusionless Lorenz equations.
    Valani RN
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38252778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsteady dynamics of a classical particle-wave entity.
    Valani RN; Slim AC; Paganin DM; Simula TP; Vo T
    Phys Rev E; 2021 Jul; 104(1-2):015106. PubMed ID: 34412331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ratcheting droplet pairs.
    Galeano-Rios CA; Couchman MMP; Caldairou P; Bush JWM
    Chaos; 2018 Sep; 28(9):096112. PubMed ID: 30278627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring orbital dynamics and trapping with a generalized pilot-wave framework.
    Tambasco LD; Bush JWM
    Chaos; 2018 Sep; 28(9):096115. PubMed ID: 30278641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bouncing droplets on a billiard table.
    Shirokoff D
    Chaos; 2013 Mar; 23(1):013115. PubMed ID: 23556952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.