BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37849188)

  • 1. Kernel-based learning framework for discovering the governing equations of stochastic jump-diffusion processes directly from data.
    Sun W; Feng J; Su J; Guo Q
    Phys Rev E; 2023 Sep; 108(3-2):035306. PubMed ID: 37849188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting stochastic governing laws by non-local Kramers-Moyal formulae.
    Lu Y; Li Y; Duan J
    Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2229):20210195. PubMed ID: 35719068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arbitrary-Order Finite-Time Corrections for the Kramers-Moyal Operator.
    Rydin Gorjão L; Witthaut D; Lehnertz K; Lind PG
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33923154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting the maximum likelihood transition path from data of stochastic dynamical systems.
    Dai M; Gao T; Lu Y; Zheng Y; Duan J
    Chaos; 2020 Nov; 30(11):113124. PubMed ID: 33261328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis and data-driven reconstruction of bivariate jump-diffusion processes.
    Rydin Gorjão L; Heysel J; Lehnertz K; Tabar MRR
    Phys Rev E; 2019 Dec; 100(6-1):062127. PubMed ID: 31962437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testing Jump-Diffusion in Epileptic Brain Dynamics: Impact of Daily Rhythms.
    Kurth JG; Rings T; Lehnertz K
    Entropy (Basel); 2021 Mar; 23(3):. PubMed ID: 33807933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparse learning of stochastic dynamical equations.
    Boninsegna L; Nüske F; Clementi C
    J Chem Phys; 2018 Jun; 148(24):241723. PubMed ID: 29960307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An end-to-end deep learning approach for extracting stochastic dynamical systems with α-stable Lévy noise.
    Fang C; Lu Y; Gao T; Duan J
    Chaos; 2022 Jun; 32(6):063112. PubMed ID: 35778145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovering transition phenomena from data of stochastic dynamical systems with Lévy noise.
    Lu Y; Duan J
    Chaos; 2020 Sep; 30(9):093110. PubMed ID: 33003930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometric and projection effects in Kramers-Moyal analysis.
    Lade SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031137. PubMed ID: 19905092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering governing equations from data by sparse identification of nonlinear dynamical systems.
    Brunton SL; Proctor JL; Kutz JN
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):3932-7. PubMed ID: 27035946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finding nonlinear system equations and complex network structures from data: A sparse optimization approach.
    Lai YC
    Chaos; 2021 Aug; 31(8):082101. PubMed ID: 34470223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Master equations and the theory of stochastic path integrals.
    Weber MF; Frey E
    Rep Prog Phys; 2017 Apr; 80(4):046601. PubMed ID: 28306551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-driven discovery of the governing equations of dynamical systems via moving horizon optimization.
    Lejarza F; Baldea M
    Sci Rep; 2022 Jul; 12(1):11836. PubMed ID: 35821394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical Derivation of Moment Equations in Stochastic Chemical Kinetics.
    Sotiropoulos V; Kaznessis YN
    Chem Eng Sci; 2011 Feb; 66(3):268-277. PubMed ID: 21949443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust data-driven discovery of governing physical laws with error bars.
    Zhang S; Lin G
    Proc Math Phys Eng Sci; 2018 Sep; 474(2217):20180305. PubMed ID: 30333709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-driven discovery of partial differential equations.
    Rudy SH; Brunton SL; Proctor JL; Kutz JN
    Sci Adv; 2017 Apr; 3(4):e1602614. PubMed ID: 28508044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparse inference and active learning of stochastic differential equations from data.
    Huang Y; Mabrouk Y; Gompper G; Sabass B
    Sci Rep; 2022 Dec; 12(1):21691. PubMed ID: 36522347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems.
    Venturi D; Karniadakis GE
    Proc Math Phys Eng Sci; 2014 Jun; 470(2166):20130754. PubMed ID: 24910519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-driven discovery of the governing equations for transport in heterogeneous media by symbolic regression and stochastic optimization.
    Im J; de Barros FPJ; Masri S; Sahimi M; Ziff RM
    Phys Rev E; 2023 Jan; 107(1):L013301. PubMed ID: 36797859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.