These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37849351)

  • 1. Lattice thermal conductivity of 2D nanomaterials: a simple semi-empirical approach.
    Tromer RM; Felix IM; Pereira LFC; da Luz MGE; Junior LAR; Galvão DS
    Phys Chem Chem Phys; 2023 Nov; 25(42):28703-28715. PubMed ID: 37849351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-low lattice thermal conductivity of monolayer penta-silicene and penta-germanene.
    Gao Z; Zhang Z; Liu G; Wang JS
    Phys Chem Chem Phys; 2019 Dec; 21(47):26033-26040. PubMed ID: 31746866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab Initio Molecular Dynamics and Lattice Dynamics-Based Force Field for Modeling Hexagonal Boron Nitride in Mechanical and Interfacial Applications.
    Govind Rajan A; Strano MS; Blankschtein D
    J Phys Chem Lett; 2018 Apr; 9(7):1584-1591. PubMed ID: 29528646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene and 2D Hexagonal Boron Nitride Heterostructure for Thermal Management in Actively Tunable Manner.
    Sun H; Jiang Y; Hua R; Huang R; Shi L; Dong Y; Liang S; Ni J; Zhang C; Dong R; Song Y
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Conductivity of Graphene-hBN Superlattice Ribbons.
    Felix IM; Pereira LFC
    Sci Rep; 2018 Feb; 8(1):2737. PubMed ID: 29426893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas-Phase Fluorination of Hexagonal Boron Nitride.
    Meiyazhagan A; Serles P; Salpekar D; Oliveira EF; Alemany LB; Fu R; Gao G; Arif T; Vajtai R; Swaminathan V; Galvao DS; Khabashesku VN; Filleter T; Ajayan PM
    Adv Mater; 2021 Dec; 33(52):e2106084. PubMed ID: 34617333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal conductivity of a h-BCN monolayer.
    Zhang YY; Pei QX; Liu HY; Wei N
    Phys Chem Chem Phys; 2017 Oct; 19(40):27326-27331. PubMed ID: 28971201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Heterostructured Reduced Graphene Oxide-Hexagonal Boron Nitride-Stacking Material for Silicone Thermal Grease with Enhanced Thermally Conductive Properties.
    Liang W; Ge X; Ge J; Li T; Zhao T; Chen X; Zhang M; Ji J; Pang X; Liu R
    Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31261720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study.
    Wang X; Hong Y; Chan PKL; Zhang J
    Nanotechnology; 2017 Jun; 28(25):255403. PubMed ID: 28486215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Dynamics Simulation on In-Plane Thermal Conductivity of Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Yang Y; Ma J; Yang J; Zhang Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45742-45751. PubMed ID: 36172714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging properties of carbon based 2D material beyond graphene.
    Jana S; Bandyopadhyay A; Datta S; Bhattacharya D; Jana D
    J Phys Condens Matter; 2021 Nov; 34(5):. PubMed ID: 34663760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Thermal Conductivity of Silicone Composites Filled with Few-Layered Hexagonal Boron Nitride.
    Cheng WC; Hsieh YT; Liu WR
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32932683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimensional Crossover of Thermal Transport in Hybrid Boron Nitride Nanostructures.
    Sakhavand N; Shahsavari R
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18312-9. PubMed ID: 26158661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical and Thermal Transport in Coplanar Polycrystalline Graphene-hBN Heterostructures.
    Barrios-Vargas JE; Mortazavi B; Cummings AW; Martinez-Gordillo R; Pruneda M; Colombo L; Rabczuk T; Roche S
    Nano Lett; 2017 Mar; 17(3):1660-1664. PubMed ID: 28195494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of substitutional and vacancy defects on the electrical and mechanical properties of 2D-hexagonal boron nitride.
    Sagar TC; Chinthapenta V
    J Mol Model; 2020 Jul; 26(8):192. PubMed ID: 32620980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets.
    Yuan C; Duan B; Li L; Xie B; Huang M; Luo X
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13000-6. PubMed ID: 25996341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Conductivity of Two Types of 2D Carbon Allotropes: a Molecular Dynamics Study.
    Li S; Ren H; Zhang Y; Xie X; Cai K; Li C; Wei N
    Nanoscale Res Lett; 2019 Jan; 14(1):7. PubMed ID: 30618012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-Principles Prediction of Ultralow Lattice Thermal Conductivity of Dumbbell Silicene: A Comparison with Low-Buckled Silicene.
    Peng B; Zhang H; Shao H; Xu Y; Zhang R; Lu H; Zhang DW; Zhu H
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20977-85. PubMed ID: 27460331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable Synthesis of Monolayer Hexagonal Boron Nitride on Graphene with Giant Bandgap Renormalization.
    Wang P; Lee W; Corbett JP; Koll WH; Vu NM; Laleyan DA; Wen Q; Wu Y; Pandey A; Gim J; Wang D; Qiu DY; Hovden R; Kira M; Heron JT; Gupta JA; Kioupakis E; Mi Z
    Adv Mater; 2022 May; 34(21):e2201387. PubMed ID: 35355349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions.
    Zhou J; Li H; Tang HK; Shao L; Han K; Shen X
    ACS Omega; 2022 Feb; 7(7):5844-5852. PubMed ID: 35224345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.