These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 37849353)

  • 1. Precursor skyrmion states near the ordering temperatures of chiral magnets.
    Leonov AO
    Phys Chem Chem Phys; 2023 Nov; 25(42):28691-28702. PubMed ID: 37849353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Skyrmion Attraction in Chiral Magnets near the Ordering Temperatures.
    Leonov AO; Rößler UK
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface anchoring as a control parameter for shaping skyrmion or toron properties in thin layers of chiral nematic liquid crystals and noncentrosymmetric magnets.
    Leonov AO
    Phys Rev E; 2021 Oct; 104(4-1):044701. PubMed ID: 34781482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skyrmion flop transition and congregation of mutually orthogonal skyrmions in cubic helimagnets.
    Vlasov SM; Uzdin VM; Leonov AO
    J Phys Condens Matter; 2020 May; 32(18):185801. PubMed ID: 31962299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing Skyrmion Hall Effect by Thickness Gradients in Wedge-Shaped Samples of Cubic Helimagnets.
    Shigenaga T; Leonov AO
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ground state search, hysteretic behaviour, and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures.
    Beg M; Carey R; Wang W; Cortés-Ortuño D; Vousden M; Bisotti MA; Albert M; Chernyshenko D; Hovorka O; Stamps RL; Fangohr H
    Sci Rep; 2015 Nov; 5():17137. PubMed ID: 26601904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet.
    Karube K; White JS; Morikawa D; Dewhurst CD; Cubitt R; Kikkawa A; Yu X; Tokunaga Y; Arima TH; Rønnow HM; Tokura Y; Taguchi Y
    Sci Adv; 2018 Sep; 4(9):eaar7043. PubMed ID: 30225364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room-temperature skyrmion phase in bulk Cu
    Deng L; Wu HC; Litvinchuk AP; Yuan NFQ; Lee JJ; Dahal R; Berger H; Yang HD; Chu CW
    Proc Natl Acad Sci U S A; 2020 Apr; 117(16):8783-8787. PubMed ID: 32241892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic Direct-Write Skyrmion Nanolithography.
    Ognev AV; Kolesnikov AG; Kim YJ; Cha IH; Sadovnikov AV; Nikitov SA; Soldatov IV; Talapatra A; Mohanty J; Mruczkiewicz M; Ge Y; Kerber N; Dittrich F; Virnau P; Kläui M; Kim YK; Samardak AS
    ACS Nano; 2020 Nov; 14(11):14960-14970. PubMed ID: 33152236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation from Magnetic Soliton to Skyrmion in a Monoaxial Chiral Magnet.
    Li L; Song D; Wang W; Zheng F; Kovács A; Tian M; Dunin-Borkowski RE; Du H
    Adv Mater; 2023 Apr; 35(16):e2209798. PubMed ID: 36573473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromagnetic Design of Skyrmionic Materials and Chiral Magnetic Configurations in Patterned Nanostructures for Neuromorphic and Qubit Applications.
    One RA; Mican S; Cimpoeșu AG; Joldos M; Tetean R; Tiușan CV
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topological transitions among skyrmion- and hedgehog-lattice states in cubic chiral magnets.
    Fujishiro Y; Kanazawa N; Nakajima T; Yu XZ; Ohishi K; Kawamura Y; Kakurai K; Arima T; Mitamura H; Miyake A; Akiba K; Tokunaga M; Matsuo A; Kindo K; Koretsune T; Arita R; Tokura Y
    Nat Commun; 2019 Mar; 10(1):1059. PubMed ID: 30837479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Embedded Skyrmion Bags in Thin Films of Chiral Magnets.
    Yang L; Savchenko AS; Zheng F; Kiselev NS; Rybakov FN; Han X; Blügel S; Dunin-Borkowski RE
    Adv Mater; 2024 Jul; ():e2403274. PubMed ID: 39045913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization and racetrack application of asymmetric Néel skyrmions in hybrid nanostructures.
    Zelent M; Moalic M; Mruczkiewicz M; Li X; Zhou Y; Krawczyk M
    Sci Rep; 2023 Aug; 13(1):13572. PubMed ID: 37604926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition between distinct hybrid skyrmion textures through their hexagonal-to-square crystal transformation in a polar magnet.
    Singh D; Fujishiro Y; Hayami S; Moody SH; Nomoto T; Baral PR; Ukleev V; Cubitt R; Steinke NJ; Gawryluk DJ; Pomjakushina E; Ōnuki Y; Arita R; Tokura Y; Kanazawa N; White JS
    Nat Commun; 2023 Dec; 14(1):8050. PubMed ID: 38052859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single Chiral Skyrmions in Ultrathin Magnetic Films.
    Aranda AR; Guslienko KY
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous skyrmion ground states in magnetic metals.
    Rössler UK; Bogdanov AN; Pfleiderer C
    Nature; 2006 Aug; 442(7104):797-801. PubMed ID: 16915285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of second neighbor interactions on skyrmion lattices in chiral magnets.
    Oliveira EAS; Silva RL; Silva RC; Pereira AR
    J Phys Condens Matter; 2017 May; 29(20):205801. PubMed ID: 28248638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seeding and Emergence of Composite Skyrmions in a van der Waals Magnet.
    Powalla L; Birch MT; Litzius K; Wintz S; Yasin FS; Turnbull LA; Schulz F; Mayoh DA; Balakrishnan G; Weigand M; Yu X; Kern K; Schütz G; Burghard M
    Adv Mater; 2023 Mar; 35(12):e2208930. PubMed ID: 36637996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous Topological Magnetic Transitions in NdCo
    Zuo S; Liu J; Qiao K; Zhang Y; Chen J; Su N; Liu Y; Cao J; Zhao T; Wang J; Hu F; Sun J; Jiang C; Shen B
    Adv Mater; 2021 Oct; 33(40):e2103751. PubMed ID: 34402532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.