These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 37849711)
1. Oxygen-doped antimonene monolayer as a promising anchoring material for lithium-sulfur batteries: a first-principles study. Zhu V; Luo X RSC Adv; 2023 Oct; 13(43):30443-30452. PubMed ID: 37849711 [TBL] [Abstract][Full Text] [Related]
2. Design rules of heteroatom-doped graphene to achieve high performance lithium-sulfur batteries: Both strong anchoring and catalysing based on first principles calculation. Zhang L; Liang P; Shu HB; Man XL; Du XQ; Chao DL; Liu ZG; Sun YP; Wan HZ; Wang H J Colloid Interface Sci; 2018 Nov; 529():426-431. PubMed ID: 29940325 [TBL] [Abstract][Full Text] [Related]
3. New Insights into the Anchoring Mechanism of Polysulfides inside Nanoporous Covalent Organic Frameworks for Lithium-Sulfur Batteries. Song X; Zhang M; Yao M; Hao C; Qiu J ACS Appl Mater Interfaces; 2018 Dec; 10(50):43896-43903. PubMed ID: 30480990 [TBL] [Abstract][Full Text] [Related]
4. Design of Novel Transition-Metal-Doped C He C; Liang Y; Zhang W ACS Appl Mater Interfaces; 2022 Jun; 14(25):29120-29130. PubMed ID: 35768945 [TBL] [Abstract][Full Text] [Related]
5. Interaction between functionalized graphene and sulfur compounds in a lithium-sulfur battery - a density functional theory investigation. Wasalathilake KC; Roknuzzaman M; Ostrikov KK; Ayoko GA; Yan C RSC Adv; 2018 Jan; 8(5):2271-2279. PubMed ID: 35541465 [TBL] [Abstract][Full Text] [Related]
6. Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides for Lithium-Sulfur Batteries. Hou TZ; Chen X; Peng HJ; Huang JQ; Li BQ; Zhang Q; Li B Small; 2016 Jun; 12(24):3283-91. PubMed ID: 27168000 [TBL] [Abstract][Full Text] [Related]
7. Theoretical prediction of 2D biphenylene as a potential anchoring material for lithium-sulfur batteries. Wang H; Kong F; Qiu Z; Guo J; Shu H; Wei Q Phys Chem Chem Phys; 2023 Sep; 25(37):25240-25250. PubMed ID: 37700681 [TBL] [Abstract][Full Text] [Related]
8. Pmma-XO (X = C, Si, Ge) monolayer as promising anchoring materials for lithium-sulfur battery: a first-principles study. An YR; Fan XL; Wang SY; Luo ZF; Hu Y; Xia ZH Nanotechnology; 2019 Feb; 30(8):085405. PubMed ID: 30523822 [TBL] [Abstract][Full Text] [Related]
9. A theoretical study of the NbS Zhang X; Zhou X; Wang Y; Li Y Phys Chem Chem Phys; 2023 Apr; 25(14):10097-10102. PubMed ID: 36974522 [TBL] [Abstract][Full Text] [Related]
10. Group IV Monochalcogenides MX (M=Ge, Sn; X=S, Se) as Chemical Anchors of Polysulfides for Lithium-Sulfur Batteries. Lv X; Wei W; Yang H; Li J; Huang B; Dai Y Chemistry; 2018 Aug; 24(43):11193-11199. PubMed ID: 29797539 [TBL] [Abstract][Full Text] [Related]
11. How to make inert boron nitride nanosheets active for the immobilization of polysulfides for lithium-sulfur batteries: a computational study. Zhao Y; Yang L; Zhao J; Cai Q; Jin P Phys Chem Chem Phys; 2017 Jul; 19(28):18208-18216. PubMed ID: 28678227 [TBL] [Abstract][Full Text] [Related]
12. Potential Application of Graphene/Antimonene Herterostructure as an Anode for Li-Ion Batteries: A First-Principles Study. Wu P; Li P; Huang M Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31658597 [TBL] [Abstract][Full Text] [Related]
13. Two-dimensional biphenylene: a promising anchoring material for lithium-sulfur batteries. Al-Jayyousi HK; Sajjad M; Liao K; Singh N Sci Rep; 2022 Mar; 12(1):4653. PubMed ID: 35301377 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic Insights into Interactions of Polysulfides at VS Jayan R; Islam MM ACS Appl Mater Interfaces; 2021 Aug; 13(30):35848-35855. PubMed ID: 34284574 [TBL] [Abstract][Full Text] [Related]
15. Properties of S-Functionalized Nitrogen-Based MXene (Ti Yao C; Li W; Duan K; Zhu C; Li J; Ren Q; Bai G Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684918 [TBL] [Abstract][Full Text] [Related]
16. Selenium Edge as a Selective Anchoring Site for Lithium-Sulfur Batteries with MoSe Wong H; Ou X; Zhuang M; Liu Z; Hossain MD; Cai Y; Liu H; Lee H; Wang CZ; Luo Z ACS Appl Mater Interfaces; 2019 Jun; 11(22):19986-19993. PubMed ID: 31083896 [TBL] [Abstract][Full Text] [Related]
17. Investigation of the anchoring and electrocatalytic properties of pristine and doped borophosphene for Na-S batteries. Kong F; Chen L; Yang M; Guo J; Wan J; Shu H; Dai J Phys Chem Chem Phys; 2023 Feb; 25(7):5443-5452. PubMed ID: 36744599 [TBL] [Abstract][Full Text] [Related]
18. Adsorption-catalysis design with cerium oxide nanorods supported nickel-cobalt-oxide with multifunctional reaction interfaces for anchoring polysulfides and accelerating redox reactions in lithium sulfur battery. Azam S; Wei Z; Wang R J Colloid Interface Sci; 2023 Apr; 635():466-480. PubMed ID: 36599244 [TBL] [Abstract][Full Text] [Related]
19. Enhancing Adsorption and Reaction Kinetics of Polysulfides Using CoP-Coated N-Doped Mesoporous Carbon for High-Energy-Density Lithium-Sulfur Batteries. Cheng Q; Yin Z; Pan S; Zhang G; Pan Z; Yu X; Fang Y; Rao H; Zhong X ACS Appl Mater Interfaces; 2020 Sep; 12(39):43844-43853. PubMed ID: 32897698 [TBL] [Abstract][Full Text] [Related]
20. Toward High-Performance Lithium-Sulfur Batteries: Efficient Anchoring and Catalytic Conversion of Polysulfides Using P-Doped Carbon Foam. Zou Y; Guo D; Yang B; Zhou L; Lin P; Wang J; Chen X; Wang S ACS Appl Mater Interfaces; 2021 Oct; 13(42):50093-50100. PubMed ID: 34649425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]