These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 37849902)
21. Comparative Genomics Analysis Provides New Insight Into Molecular Basis of Stomatal Movement in Moseley RC; Tuskan GA; Yang X Front Plant Sci; 2019; 10():292. PubMed ID: 30930922 [TBL] [Abstract][Full Text] [Related]
22. Modelling nonlinear dynamics of Crassulacean acid metabolism productivity and water use for global predictions. Hartzell S; Bartlett MS; Inglese P; Consoli S; Yin J; Porporato A Plant Cell Environ; 2021 Jan; 44(1):34-48. PubMed ID: 33073369 [TBL] [Abstract][Full Text] [Related]
23. Achievable productivities of certain CAM plants: basis for high values compared with C Nobel PS New Phytol; 1991 Oct; 119(2):183-205. PubMed ID: 33874131 [TBL] [Abstract][Full Text] [Related]
24. Photosynthesis-related characteristics of the midrib and the interveinal lamina in leaves of the C3-CAM intermediate plant Mesembryanthemum crystallinum. Kuźniak E; Kornas A; Kaźmierczak A; Rozpądek P; Nosek M; Kocurek M; Zellnig G; Müller M; Miszalski Z Ann Bot; 2016 Jun; 117(7):1141-51. PubMed ID: 27091507 [TBL] [Abstract][Full Text] [Related]
26. Comparative proteomics of Mesembryanthemum crystallinum guard cells and mesophyll cells in transition from C Guan Q; Kong W; Zhu D; Zhu W; Dufresne C; Tian J; Chen S J Proteomics; 2021 Jan; 231():104019. PubMed ID: 33075550 [TBL] [Abstract][Full Text] [Related]
27. Altered Gene Regulatory Networks Are Associated With the Transition From C Heyduk K; Hwang M; Albert V; Silvera K; Lan T; Farr K; Chang TH; Chan MT; Winter K; Leebens-Mack J Front Plant Sci; 2018; 9():2000. PubMed ID: 30745906 [TBL] [Abstract][Full Text] [Related]
28. Physiological Changes in Guan Q; Tan B; Kelley TM; Tian J; Chen S Front Plant Sci; 2020; 11():283. PubMed ID: 32256510 [TBL] [Abstract][Full Text] [Related]
29. Leaf anatomical traits which accommodate the facultative engagement of crassulacean acid metabolism in tropical trees of the genus Clusia. Barrera Zambrano VA; Lawson T; Olmos E; Fernández-García N; Borland AM J Exp Bot; 2014 Jul; 65(13):3513-23. PubMed ID: 24510939 [TBL] [Abstract][Full Text] [Related]
30. Water Use Efficiency as a Constraint and Target for Improving the Resilience and Productivity of C Leakey ADB; Ferguson JN; Pignon CP; Wu A; Jin Z; Hammer GL; Lobell DB Annu Rev Plant Biol; 2019 Apr; 70():781-808. PubMed ID: 31035829 [TBL] [Abstract][Full Text] [Related]
31. Peeling back the layers of crassulacean acid metabolism: functional differentiation between Kalanchoë fedtschenkoi epidermis and mesophyll proteomes. Abraham PE; Hurtado Castano N; Cowan-Turner D; Barnes J; Poudel S; Hettich R; Flütsch S; Santelia D; Borland AM Plant J; 2020 Jul; 103(2):869-888. PubMed ID: 32314451 [TBL] [Abstract][Full Text] [Related]
32. Diel dynamics of multi-omics in elkhorn fern provide new insights into weak CAM photosynthesis. Li C; Huang W; Han X; Zhao G; Zhang W; He W; Nie B; Chen X; Zhang T; Bai W; Zhang X; He J; Zhao C; Fernie AR; Tschaplinski TJ; Yang X; Yan S; Wang L Plant Commun; 2023 Sep; 4(5):100594. PubMed ID: 36960529 [TBL] [Abstract][Full Text] [Related]
33. Time of day and network reprogramming during drought induced CAM photosynthesis in Sedum album. Wai CM; Weise SE; Ozersky P; Mockler TC; Michael TP; VanBuren R PLoS Genet; 2019 Jun; 15(6):e1008209. PubMed ID: 31199791 [TBL] [Abstract][Full Text] [Related]
34. Multiomics unravels potential molecular switches in the C Guan Q; Kong W; Tan B; Zhu W; Akter T; Li J; Tian J; Chen S J Proteomics; 2024 May; 299():105145. PubMed ID: 38431086 [TBL] [Abstract][Full Text] [Related]
35. Shifting photosynthesis between the fast and slow lane: Facultative CAM and water-deficit stress. Winter K; Holtum JAM J Plant Physiol; 2024 Mar; 294():154185. PubMed ID: 38373389 [TBL] [Abstract][Full Text] [Related]
37. Possible roles for phytohormones in controlling the stomatal behavior of Mesembryanthemum crystallinum during the salt-induced transition from C Wakamatsu A; Mori IC; Matsuura T; Taniwaki Y; Ishii R; Yoshida R J Plant Physiol; 2021 Jul; 262():153448. PubMed ID: 34058643 [TBL] [Abstract][Full Text] [Related]
38. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age. Schuler ML; Mantegazza O; Weber AP Plant J; 2016 Jul; 87(1):51-65. PubMed ID: 26945781 [TBL] [Abstract][Full Text] [Related]
39. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Yamori W; Hikosaka K; Way DA Photosynth Res; 2014 Feb; 119(1-2):101-17. PubMed ID: 23801171 [TBL] [Abstract][Full Text] [Related]
40. Reconciling continuous and discrete models of C4 and CAM evolution. Edwards EJ Ann Bot; 2023 Nov; 132(4):717-725. PubMed ID: 37675944 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]