BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37849981)

  • 1. A rehabilitation robot control framework with adaptation of training tasks and robotic assistance.
    Xu J; Huang K; Zhang T; Cao K; Ji A; Xu L; Li Y
    Front Bioeng Biotechnol; 2023; 11():1244550. PubMed ID: 37849981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patient's Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots.
    Guo B; Li Z; Huang M; Li X; Han J
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Greedy Assist-as-Needed Controller for Upper Limb Rehabilitation.
    Luo L; Peng L; Wang C; Hou ZG
    IEEE Trans Neural Netw Learn Syst; 2019 Nov; 30(11):3433-3443. PubMed ID: 30736008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voluntary Assist-as-Needed Controller for an Ankle Power-Assist Rehabilitation Robot.
    Yang R; Shen Z; Lyu Y; Zhuang Y; Li L; Song R
    IEEE Trans Biomed Eng; 2023 Jun; 70(6):1795-1803. PubMed ID: 37015472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation.
    Dalla Gasperina S; Longatelli V; Braghin F; Pedrocchi A; Gandolla M
    Front Neurorobot; 2021; 15():734130. PubMed ID: 35115915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research on assist-as-needed control strategy of wrist function-rehabilitation robot].
    Wang J; Zuo G; Zhang J; Shi C; Song T; Guo S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):129-135. PubMed ID: 32096386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation.
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System.
    Tsai TC; Chiang MH
    Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fuzzy Adaptive Passive Control Strategy Design for Upper-Limb End-Effector Rehabilitation Robot.
    Hu Y; Meng J; Li G; Zhao D; Feng G; Zuo G; Liu Y; Zhang J; Shi C
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closed-Loop Task Difficulty Adaptation during Virtual Reality Reach-to-Grasp Training Assisted with an Exoskeleton for Stroke Rehabilitation.
    Grimm F; Naros G; Gharabaghi A
    Front Neurosci; 2016; 10():518. PubMed ID: 27895550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of robotic assistance on upper limb spatial muscle synergies in healthy people during planar upper-limb training.
    Cancrini A; Baitelli P; Lavit Nicora M; Malosio M; Pedrocchi A; Scano A
    PLoS One; 2022; 17(8):e0272813. PubMed ID: 35939495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Assist-As-Needed Upper Extremity Robotic Therapy after Incomplete Spinal Cord Injury: A Parallel-Group Controlled Trial.
    Frullo JM; Elinger J; Pehlivan AU; Fitle K; Nedley K; Francisco GE; Sergi F; O'Malley MK
    Front Neurorobot; 2017; 11():26. PubMed ID: 28659784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-mode adaptive control strategy for a lower limb rehabilitation robot.
    Liang X; Yan Y; Dai S; Guo Z; Li Z; Liu S; Su T
    Front Bioeng Biotechnol; 2024; 12():1392599. PubMed ID: 38817926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of three-dimensional, assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional tabletop therapy after chronic stroke.
    Reinkensmeyer DJ; Wolbrecht ET; Chan V; Chou C; Cramer SC; Bobrow JE
    Am J Phys Med Rehabil; 2012 Nov; 91(11 Suppl 3):S232-41. PubMed ID: 23080039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid Robotic and Electrical Stimulation Assistance Can Enhance Performance and Reduce Mental Demand.
    Cazenave L; Einenkel M; Yurkewich A; Endo S; Hirche S; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4063-4072. PubMed ID: 37815973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Participation and Training Task Difficulty Applied to the Multi-Sensor Systems of Rehabilitation Robots.
    Yan H; Wang H; Vladareanu L; Lin M; Vladareanu V; Li Y
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31661870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research on mode adjustment control strategy of upper limb rehabilitation robot based on fuzzy recognition of interaction force].
    Li G; Tao L; Meng J; Ye S; Feng G; Zhao D; Hu Y; Tang M; Song T; Fu R; Zuo G; Zhang J; Shi C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Feb; 41(1):90-97. PubMed ID: 38403608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trajectory Deformation-Based Multi-Modal Adaptive Compliance Control for a Wearable Lower Limb Rehabilitation Robot.
    Zhou J; Peng H; Zheng M; Wei Z; Fan T; Song R
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():314-324. PubMed ID: 38165796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of upper extremity robot-assistances in subacute and chronic stroke subjects.
    Ziherl J; Novak D; Olenšek A; Mihelj M; Munih M
    J Neuroeng Rehabil; 2010 Oct; 7():52. PubMed ID: 20955566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.