These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37849981)

  • 41. Spatiotemporal Compliance Control for a Wearable Lower Limb Rehabilitation Robot.
    Zhou J; Peng H; Su S; Song R
    IEEE Trans Biomed Eng; 2023 Jun; 70(6):1858-1868. PubMed ID: 37015454
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.
    Mancisidor A; Zubizarreta A; Cabanes I; Portillo E; Jung JH
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29510596
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Performance-Based Hybrid Control of a Cable-Driven Upper-Limb Rehabilitation Robot.
    Li X; Yang Q; Song R
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1351-1359. PubMed ID: 32997619
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A computational model of human-robot load sharing during robot-assisted arm movement training after stroke.
    Reinkensmeyer DJ; Wolbrecht E; Bobrow J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4019-23. PubMed ID: 18002881
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Configuration-Dependent Optimal Impedance Control of an Upper Extremity Stroke Rehabilitation Manipulandum.
    Ghannadi B; Sharif Razavian R; McPhee J
    Front Robot AI; 2018; 5():124. PubMed ID: 33501003
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation.
    Brauchle D; Vukelić M; Bauer R; Gharabaghi A
    Front Hum Neurosci; 2015; 9():564. PubMed ID: 26528168
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T; Islam MR; Brahmi B; Rahman MH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assistance level quantification-based human-robot interaction space reshaping for rehabilitation training.
    Li X; Lu Q; Chen P; Gong S; Yu X; He H; Li K
    Front Neurorobot; 2023; 17():1161007. PubMed ID: 37205055
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Robotic learning from demonstration of therapist's time-varying assistance to a patient in trajectory-following tasks.
    Najafi M; Adams K; Tavakoli M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():888-894. PubMed ID: 28813933
    [TBL] [Abstract][Full Text] [Related]  

  • 50. sEMG-Based Gain-Tuned Compliance Control for the Lower Limb Rehabilitation Robot during Passive Training.
    Tian J; Wang H; Zheng S; Ning Y; Zhang X; Niu J; Vladareanu L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298256
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simulation study on assist-as-needed control of a rehabilitation robotic walker.
    Wang W; Gong T; Song Z; Wang Z; Ji J
    Technol Health Care; 2023; 31(S1):293-302. PubMed ID: 37066930
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multi-purpose Robotic Training Strategies for Neurorehabilitation with Model Predictive Controllers.
    Ozen O; Traversa F; Gadi S; Buetler KA; Nef T; Marchal-Crespo L
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():754-759. PubMed ID: 31374721
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment.
    Wang Y; Liu Z; Feng Z
    Clin Biomech (Bristol, Avon); 2022 May; 95():105660. PubMed ID: 35561659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.
    Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction with a reactive partner improves learning in contrast to passive guidance.
    Ivanova E; Eden J; Carboni G; Krüger J; Burdet E
    Sci Rep; 2022 Sep; 12(1):15821. PubMed ID: 36138031
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improving short-term retention after robotic training by leveraging fixed-gain controllers.
    Losey DP; Blumenschein LH; Clark JP; O'Malley MK
    J Rehabil Assist Technol Eng; 2019; 6():2055668319866311. PubMed ID: 31523451
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Mouth and Tongue Interactive Device to Control Wearable Robotic Limbs in Tasks where Human Limbs Are Occupied.
    Jing H; Zheng T; Zhang Q; Liu B; Sun K; Li L; Zhao J; Zhu Y
    Biosensors (Basel); 2024 Apr; 14(5):. PubMed ID: 38785687
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Customized Trajectory Optimization and Compliant Tracking Control for Passive Upper Limb Rehabilitation.
    Li L; Han J; Li X; Guo B; Wang X
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571735
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dyad motor learning in a wrist-robotic environment: Learning together is better than learning alone.
    Winter LV; Panzer S; Konczak J
    Hum Mov Sci; 2024 Feb; 93():103172. PubMed ID: 38168644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.