These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 3784999)

  • 1. The photon sensitivity of a moderated activation neutron detector.
    McGinley PH
    Med Phys; 1986; 13(5):700-2. PubMed ID: 3784999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and thermal neutron profiles for a 25-MV x-ray beam.
    Price KW; Nath R; Holeman GR
    Med Phys; 1978; 5(4):285-9. PubMed ID: 98695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scattered neutron dose equivalent from an active scanning proton beam delivery system.
    Hecksel D; Sandison GA; Farr JB; Edwards AC
    Australas Phys Eng Sci Med; 2007 Dec; 30(4):326-30. PubMed ID: 18274074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An intercomparison of neutron measurments for a 25 MV x-ray radiotherapy accelerator.
    Nath R; Price KW; Holeman GR
    Med Phys; 1980; 7(5):545-8. PubMed ID: 6252432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.
    Bleuel DL; Donahue RJ; Ludewigt BA; Vujic J
    Med Phys; 1998 Sep; 25(9):1725-34. PubMed ID: 9775379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of neutron radiation quality with a tissue-equivalent proportional counter for a low-energy accelerator-based in vivo neutron activation facility.
    Aslam ; Waker AJ
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):467-70. PubMed ID: 21183541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-phantom dosimetry and spectrometry of photoneutrons from an 18 MV linear accelerator.
    d'Errico F; Nath R; Tana L; Curzio G; Alberts WG
    Med Phys; 1998 Sep; 25(9):1717-24. PubMed ID: 9775378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulations of the differential beam hardening effect of a flattening filter on a therapeutic x-ray beam.
    Lee PC
    Med Phys; 1997 Sep; 24(9):1485-9. PubMed ID: 9304577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulations of neutron spectral fluence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit.
    Zheng Y; Fontenot J; Taddei P; Mirkovic D; Newhauser W
    Phys Med Biol; 2008 Jan; 53(1):187-201. PubMed ID: 18182696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superheated drop detector for determination of neutron dose equivalent to patients undergoing high-energy x-ray and electron radiotherapy.
    Nath R; Meigooni AS; King CR; Smolen S; d'Errico F
    Med Phys; 1993; 20(3):781-7. PubMed ID: 8350837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose levels due to neutrons in the vicinity of high-energy medical accelerators.
    McGinley PH; Wood M; Mills M; Rodriguez R
    Med Phys; 1976; 3(6):397-402. PubMed ID: 826776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of neutron contamination on dosimetry in external photon beam radiotherapy.
    Horst F; Czarnecki D; Zink K
    Med Phys; 2015 Nov; 42(11):6529-36. PubMed ID: 26520743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of dose components in phantoms irradiated with an epithermal neutron beam for boron neutron capture therapy.
    Raaijmakers CP; Konijnenberg MW; Verhagen HW; Mijnheer BJ
    Med Phys; 1995 Mar; 22(3):321-9. PubMed ID: 7596322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the thermal neutron flux in a fast neutron beam by use of a boron-coated ionization chamber.
    Lüdemann L; Matzen T; Matzke M; Schmidt R; Scobel W
    Med Phys; 1995 Nov; 22(11 Pt 1):1743-7. PubMed ID: 8587527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetry of clinical neutron and proton beams: an overview of recommendations.
    Vynckier S; ;
    Radiat Prot Dosimetry; 2004; 110(1-4):565-72. PubMed ID: 15353710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system.
    Diffenderfer ES; Ainsley CG; Kirk ML; McDonough JE; Maughan RL
    Med Phys; 2011 Nov; 38(11):6248-56. PubMed ID: 22047390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of target thickness and backstop material on proton-produced neutron beams for radiotherapy.
    Awschalom M; Rosenberg I; Kuo TY; Tom JL
    Med Phys; 1980; 7(5):495-502. PubMed ID: 6252431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the neutron and photon spectra of a clinical fast neutron beam.
    Moyers MF; Horton JL
    Med Phys; 1990; 17(4):607-14. PubMed ID: 2120558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.
    Ghassoun J; Mostacci D
    Appl Radiat Isot; 2011 Aug; 69(8):1138-42. PubMed ID: 21129990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.