BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 3784999)

  • 1. The photon sensitivity of a moderated activation neutron detector.
    McGinley PH
    Med Phys; 1986; 13(5):700-2. PubMed ID: 3784999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and thermal neutron profiles for a 25-MV x-ray beam.
    Price KW; Nath R; Holeman GR
    Med Phys; 1978; 5(4):285-9. PubMed ID: 98695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scattered neutron dose equivalent from an active scanning proton beam delivery system.
    Hecksel D; Sandison GA; Farr JB; Edwards AC
    Australas Phys Eng Sci Med; 2007 Dec; 30(4):326-30. PubMed ID: 18274074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An intercomparison of neutron measurments for a 25 MV x-ray radiotherapy accelerator.
    Nath R; Price KW; Holeman GR
    Med Phys; 1980; 7(5):545-8. PubMed ID: 6252432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.
    Bleuel DL; Donahue RJ; Ludewigt BA; Vujic J
    Med Phys; 1998 Sep; 25(9):1725-34. PubMed ID: 9775379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of neutron radiation quality with a tissue-equivalent proportional counter for a low-energy accelerator-based in vivo neutron activation facility.
    Aslam ; Waker AJ
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):467-70. PubMed ID: 21183541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-phantom dosimetry and spectrometry of photoneutrons from an 18 MV linear accelerator.
    d'Errico F; Nath R; Tana L; Curzio G; Alberts WG
    Med Phys; 1998 Sep; 25(9):1717-24. PubMed ID: 9775378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulations of the differential beam hardening effect of a flattening filter on a therapeutic x-ray beam.
    Lee PC
    Med Phys; 1997 Sep; 24(9):1485-9. PubMed ID: 9304577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulations of neutron spectral fluence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit.
    Zheng Y; Fontenot J; Taddei P; Mirkovic D; Newhauser W
    Phys Med Biol; 2008 Jan; 53(1):187-201. PubMed ID: 18182696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superheated drop detector for determination of neutron dose equivalent to patients undergoing high-energy x-ray and electron radiotherapy.
    Nath R; Meigooni AS; King CR; Smolen S; d'Errico F
    Med Phys; 1993; 20(3):781-7. PubMed ID: 8350837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose levels due to neutrons in the vicinity of high-energy medical accelerators.
    McGinley PH; Wood M; Mills M; Rodriguez R
    Med Phys; 1976; 3(6):397-402. PubMed ID: 826776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of neutron contamination on dosimetry in external photon beam radiotherapy.
    Horst F; Czarnecki D; Zink K
    Med Phys; 2015 Nov; 42(11):6529-36. PubMed ID: 26520743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of dose components in phantoms irradiated with an epithermal neutron beam for boron neutron capture therapy.
    Raaijmakers CP; Konijnenberg MW; Verhagen HW; Mijnheer BJ
    Med Phys; 1995 Mar; 22(3):321-9. PubMed ID: 7596322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the thermal neutron flux in a fast neutron beam by use of a boron-coated ionization chamber.
    Lüdemann L; Matzen T; Matzke M; Schmidt R; Scobel W
    Med Phys; 1995 Nov; 22(11 Pt 1):1743-7. PubMed ID: 8587527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetry of clinical neutron and proton beams: an overview of recommendations.
    Vynckier S; ;
    Radiat Prot Dosimetry; 2004; 110(1-4):565-72. PubMed ID: 15353710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system.
    Diffenderfer ES; Ainsley CG; Kirk ML; McDonough JE; Maughan RL
    Med Phys; 2011 Nov; 38(11):6248-56. PubMed ID: 22047390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of target thickness and backstop material on proton-produced neutron beams for radiotherapy.
    Awschalom M; Rosenberg I; Kuo TY; Tom JL
    Med Phys; 1980; 7(5):495-502. PubMed ID: 6252431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the neutron and photon spectra of a clinical fast neutron beam.
    Moyers MF; Horton JL
    Med Phys; 1990; 17(4):607-14. PubMed ID: 2120558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.
    Ghassoun J; Mostacci D
    Appl Radiat Isot; 2011 Aug; 69(8):1138-42. PubMed ID: 21129990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.