These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 37850136)

  • 1. Hardware, Software, and Wetware Codesign Environment for Synthetic Biology.
    Oliveira SMD; Densmore D
    Biodes Res; 2022; 2022():9794510. PubMed ID: 37850136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explorative Synthetic Biology in AI: Criteria of Relevance and a Taxonomy for Synthetic Models of Living and Cognitive Processes.
    Damiano L; Stano P
    Artif Life; 2023 Aug; 29(3):367-387. PubMed ID: 37490711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Systems for Wetware Artificial Life: Selected Perspectives in Synthetic Cell Research.
    Stano P
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering genetic circuits: advancements in genetic design automation tools and standards for synthetic biology.
    Buecherl L; Myers CJ
    Curr Opin Microbiol; 2022 Aug; 68():102155. PubMed ID: 35588683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of parallelized bioreactors I: dynamic scheduling software for efficient bioprocess management in high-throughput systems.
    Bromig L; von den Eichen N; Weuster-Botz D
    Bioprocess Biosyst Eng; 2022 Dec; 45(12):1927-1937. PubMed ID: 36255464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling up genetic circuit design for cellular computing: advances and prospects.
    Xiang Y; Dalchau N; Wang B
    Nat Comput; 2018; 17(4):833-853. PubMed ID: 30524216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Application of microelectronics CAD tools to synthetic biology].
    Madec M; Haiech J; Rosati É; Rezgui A; Gendrault Y; Lallement C
    Med Sci (Paris); 2017 Feb; 33(2):159-168. PubMed ID: 28240207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eugene--a domain specific language for specifying and constraining synthetic biological parts, devices, and systems.
    Bilitchenko L; Liu A; Cheung S; Weeding E; Xia B; Leguia M; Anderson JC; Densmore D
    PLoS One; 2011 Apr; 6(4):e18882. PubMed ID: 21559524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA assembly standards: Setting the low-level programming code for plant biotechnology.
    Vazquez-Vilar M; Orzaez D; Patron N
    Plant Sci; 2018 Aug; 273():33-41. PubMed ID: 29907307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A software-programmable microfluidic device for automated biology.
    Fidalgo LM; Maerkl SJ
    Lab Chip; 2011 May; 11(9):1612-9. PubMed ID: 21416077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilising datasheets for the informed automated design and build of a synthetic metabolic pathway.
    Exley K; Reynolds CR; Suckling L; Chee SM; Tsipa A; Freemont PS; McClymont D; Kitney RI
    J Biol Eng; 2019; 13():8. PubMed ID: 30675181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pySBOL: A Python Package for Genetic Design Automation and Standardization.
    Bartley BA; Choi K; Samineni M; Zundel Z; Nguyen T; Myers CJ; Sauro HM
    ACS Synth Biol; 2019 Jul; 8(7):1515-1518. PubMed ID: 30424601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimum specific cost control of technological processes realized in a living objects-containing microenvironment.
    Amelkin AA; Blagoveschenskaya MM; Lobanov YV; Amelkin AK
    Environ Sci Pollut Res Int; 2003; 10(1):44-8. PubMed ID: 12635958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetware Concepts The wave: 1970 the hardware, 1990 the software, 2010 the wetware.
    Quarta M
    N Biotechnol; 2009 Apr; 25(4):193-4. PubMed ID: 19258002
    [No Abstract]   [Full Text] [Related]  

  • 15. Implementation issues of neuro-fuzzy hardware: going toward HW/SW codesign.
    Reyneri LM
    IEEE Trans Neural Netw; 2003; 14(1):176-94. PubMed ID: 18238000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AutoBioCAD: full biodesign automation of genetic circuits.
    Rodrigo G; Jaramillo A
    ACS Synth Biol; 2013 May; 2(5):230-6. PubMed ID: 23654253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hardware/Software Co-design of Fractal Features based Fall Detection System.
    Tahir A; Morison G; Skelton DA; Gibson RM
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32325712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of microfluidics into the synthetic biology design flow.
    Huang H; Densmore D
    Lab Chip; 2014 Sep; 14(18):3459-74. PubMed ID: 25012162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hardware-Algorithm Codesign for Fast and Energy Efficient Approximate String Matching on FPGA for Computational Biology.
    Gudur VY; Maheshwari S; Bhardwaj S; Acharyya A; Shafik R
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():87-90. PubMed ID: 36086088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated engineering of synthetic metabolic pathways for efficient biomanufacturing.
    Otero-Muras I; Carbonell P
    Metab Eng; 2021 Jan; 63():61-80. PubMed ID: 33316374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.