These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 37850230)
1. Site-specific albumin tagging with chloride-containing near-infrared cyanine dyes: molecular engineering, mechanism, and imaging applications. Su Q; Zhang Y; Zhu S Chem Commun (Camb); 2023 Nov; 59(88):13125-13138. PubMed ID: 37850230 [TBL] [Abstract][Full Text] [Related]
2. Super-stable cyanine@albumin fluorophore for enhanced NIR-II bioimaging. Bai L; Hu Z; Han T; Wang Y; Xu J; Jiang G; Feng X; Sun B; Liu X; Tian R; Sun H; Zhang S; Chen X; Zhu S Theranostics; 2022; 12(10):4536-4547. PubMed ID: 35832086 [TBL] [Abstract][Full Text] [Related]
3. Albumin-seeking dyes with adjustable assemblies Du Y; Xu J; Han T; Jiang Z; Zhang Y; Li J; Chen X; Zhu S Theranostics; 2024; 14(7):2675-2686. PubMed ID: 38773981 [TBL] [Abstract][Full Text] [Related]
4. Site-specific albumin tagging with NIR-II fluorogenic dye for high-performance and super-stable bioimaging. Zhu N; Xu J; Su Q; Han T; Zhou D; Zhang Y; Zhu S Theranostics; 2024; 14(5):1860-1872. PubMed ID: 38505608 [TBL] [Abstract][Full Text] [Related]
5. Effect of charge localization on the in vivo optical imaging properties of near-infrared cyanine dye/monoclonal antibody conjugates. Sato K; Gorka AP; Nagaya T; Michie MS; Nakamura Y; Nani RR; Coble VL; Vasalatiy OV; Swenson RE; Choyke PL; Schnermann MJ; Kobayashi H Mol Biosyst; 2016 Oct; 12(10):3046-56. PubMed ID: 27452807 [TBL] [Abstract][Full Text] [Related]
6. A genetic engineering strategy for editing near-infrared-II fluorophores. Tian R; Feng X; Wei L; Dai D; Ma Y; Pan H; Ge S; Bai L; Ke C; Liu Y; Lang L; Zhu S; Sun H; Yu Y; Chen X Nat Commun; 2022 May; 13(1):2853. PubMed ID: 35606352 [TBL] [Abstract][Full Text] [Related]
7. Tracers for Fluorescence-Guided Surgery: How Elongation of the Polymethine Chain in Cyanine Dyes Alters the Pharmacokinetics of a Dual-Modality c[RGDyK] Tracer. Buckle T; van Willigen DM; Spa SJ; Hensbergen AW; van der Wal S; de Korne CM; Welling MM; van der Poel HG; Hardwick JCH; van Leeuwen FWB J Nucl Med; 2018 Jun; 59(6):986-992. PubMed ID: 29449447 [TBL] [Abstract][Full Text] [Related]
8. Role of Albumin in Accumulation and Persistence of Tumor-Seeking Cyanine Dyes. Usama SM; Park GK; Nomura S; Baek Y; Choi HS; Burgess K Bioconjug Chem; 2020 Feb; 31(2):248-259. PubMed ID: 31909595 [TBL] [Abstract][Full Text] [Related]
9. Enhanced Tumor Uptake and Retention of Cyanine Dye-Albumin Complex for Tumor-Targeted Imaging and Phototherapy. Jo G; Kim EJ; Hyun H Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614318 [TBL] [Abstract][Full Text] [Related]
10. Role of Fluorophore Charge on the In Vivo Optical Imaging Properties of Near-Infrared Cyanine Dye/Monoclonal Antibody Conjugates. Sato K; Gorka AP; Nagaya T; Michie MS; Nani RR; Nakamura Y; Coble VL; Vasalatiy OV; Swenson RE; Choyke PL; Schnermann MJ; Kobayashi H Bioconjug Chem; 2016 Feb; 27(2):404-13. PubMed ID: 26444497 [TBL] [Abstract][Full Text] [Related]
11. Sterically Shielded Heptamethine Cyanine Dyes for Bioconjugation and High Performance Near-Infrared Fluorescence Imaging. Li DH; Schreiber CL; Smith BD Angew Chem Int Ed Engl; 2020 Jul; 59(29):12154-12161. PubMed ID: 32324959 [TBL] [Abstract][Full Text] [Related]
12. NIR-II Protein-Escaping Dyes Enable High-Contrast and Long-Term Prognosis Evaluation of Flap Transplantation. Du Y; Xu J; Zheng X; Dang Z; Zhu N; Jiang Z; Li J; Zhu S Adv Mater; 2024 Apr; 36(14):e2311515. PubMed ID: 38153348 [TBL] [Abstract][Full Text] [Related]
13. New Polyfluorinated Cyanine Dyes for Selective NIR Staining of Mitochondria. Braun AB; Wehl I; Kölmel DK; Schepers U; Bräse S Chemistry; 2019 Jun; 25(34):7998-8002. PubMed ID: 30947363 [TBL] [Abstract][Full Text] [Related]
14. NIR-I emissive cyanine derived molecular probe for selective monitoring of hepatic albumin levels during hyperglycemia. Biswas B; Dogra S; Sen A; Murugan NA; Dhingra P; Jaswal K; Mondal P; Ghosh S J Mater Chem B; 2024 May; 12(18):4441-4450. PubMed ID: 38639071 [TBL] [Abstract][Full Text] [Related]
15. Photostability investigation of a near-infrared-II heptamethine cyanine dye. Chen T; Zheng Y; Gao Y; Chen H Bioorg Chem; 2022 Sep; 126():105903. PubMed ID: 35640319 [TBL] [Abstract][Full Text] [Related]
16. Recent progress on near-infrared fluorescence heptamethine cyanine dye-based molecules and nanoparticles for tumor imaging and treatment. Qiu Y; Yuan B; Cao Y; He X; Akakuru OU; Lu L; Chen N; Xu M; Wu A; Li J Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(5):e1910. PubMed ID: 37305979 [TBL] [Abstract][Full Text] [Related]
17. Development of unique xanthene-cyanine fused near-infrared fluorescent fluorophores with superior chemical stability for biological fluorescence imaging. Chen H; Lin W; Cui H; Jiang W Chemistry; 2015 Jan; 21(2):733-45. PubMed ID: 25388080 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and Optical Properties of Near-Infrared meso-Phenyl-Substituted Symmetric Heptamethine Cyanine Dyes. Levitz A; Marmarchi F; Henary M Molecules; 2018 Jan; 23(2):. PubMed ID: 29364846 [TBL] [Abstract][Full Text] [Related]
19. Modification of near-infrared cyanine dyes by serum albumin protein. Awasthi K; Nishimura G Photochem Photobiol Sci; 2011 Apr; 10(4):461-3. PubMed ID: 21152615 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of highly stable cyanine-dye-doped silica nanoparticle for biological applications. Lian Y; Ding LJ; Zhang W; Zhang XA; Zhang YL; Lin ZZ; Wang XD Methods Appl Fluoresc; 2018 Apr; 6(3):034002. PubMed ID: 29570093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]