These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37850355)

  • 21. Colloidal Si nanocrystals: a controlled organic-inorganic interface and its implications of color-tuning and chemical design toward sophisticated architectures.
    Shirahata N
    Phys Chem Chem Phys; 2011 Apr; 13(16):7284-94. PubMed ID: 21424017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphorus Doping in Si Nanocrystals/SiO2 multilayers and Light Emission with Wavelength compatible for Optical Telecommunication.
    Lu P; Mu W; Xu J; Zhang X; Zhang W; Li W; Xu L; Chen K
    Sci Rep; 2016 Mar; 6():22888. PubMed ID: 26956425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals.
    Dasog M; Yang Z; Regli S; Atkins TM; Faramus A; Singh MP; Muthuswamy E; Kauzlarich SM; Tilley RD; Veinot JG
    ACS Nano; 2013 Mar; 7(3):2676-85. PubMed ID: 23394574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Co co-doping on the optical properties of ZnTe:Mn nanocrystals.
    Silva AS; Lourenço SA; da Silva MA; da Silva SW; Morais PC; Dantas NO
    Phys Chem Chem Phys; 2017 Jan; 19(2):1158-1166. PubMed ID: 27942619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size dependence of phosphorus doping in silicon nanocrystals.
    He W; Li Z; Wen C; Liu H; Shen W
    Nanotechnology; 2016 Oct; 27(42):425710. PubMed ID: 27632417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Doping Lanthanide Nanocrystals With Non-lanthanide Ions to Simultaneously Enhance Up- and Down-Conversion Luminescence.
    Li Y; Liu C; Zhang P; Huang J; Ning H; Xiao P; Hou Y; Jing L; Gao M
    Front Chem; 2020; 8():832. PubMed ID: 33173764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The synthesis and structural characterization of boron-doped silicon-nanocrystals with enhanced electroconductivity.
    Sato K; Niino K; Fukata N; Hirakuri K; Yamauchi Y
    Nanotechnology; 2009 Sep; 20(36):365207. PubMed ID: 19687551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Defect-Induced Luminescence Quenching vs. Charge Carrier Generation of Phosphorus Incorporated in Silicon Nanocrystals as Function of Size.
    Hiller D; López-Vidrier J; Gutsch S; Zacharias M; Nomoto K; König D
    Sci Rep; 2017 Apr; 7(1):863. PubMed ID: 28408757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D microstructure analysis of silicon-boron phosphide mixed nanocrystals.
    Nomoto K; Sugimoto H; Ceguerra AV; Fujii M; Ringer SP
    Nanoscale; 2020 Apr; 12(13):7256-7262. PubMed ID: 32196060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Yb
    Zhang X; Zhang Y; Zhang X; Yin W; Wang Y; Wang H; Lu M; Li Z; Gu Z; Yu WW
    J Mater Chem C Mater; 2018; 6(37):10101-10105. PubMed ID: 30505447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of ultrafast nonlinear optical response of silicon nanocrystals by boron-doping.
    Imakita K; Ito M; Naruiwa R; Fujii M; Hayashi S
    Opt Lett; 2012 Jun; 37(11):1877-9. PubMed ID: 22660059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of phosphorus on the growth and the photoluminescence properties of Si-NCs formed in P-doped SiO/SiO
    Trad F; Giba AE; Devaux X; Stoffel M; Zhigunov D; Bouché A; Geiskopf S; Demoulin R; Pareige P; Talbot E; Vergnat M; Rinnert H
    Nanoscale; 2021 Dec; 13(46):19617-19625. PubMed ID: 34816268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution Synthesis, Surface Passivation, Optical Properties, Biomedical Applications, and Cytotoxicity of Silicon and Germanium Nanocrystals.
    McVey BFP; Prabakar S; Gooding JJ; Tilley RD
    Chempluschem; 2017 Jan; 82(1):60-73. PubMed ID: 31961504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical extinction spectra of silicon nanocrystals: size dependence upon the lowest direct transition.
    Gresback R; Murakami Y; Ding Y; Yamada R; Okazaki K; Nozaki T
    Langmuir; 2013 Feb; 29(6):1802-7. PubMed ID: 23320484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Near-infrared and mid-infrared semiconductor broadband light emitters.
    Hou CC; Chen HM; Zhang JC; Zhuo N; Huang YQ; Hogg RA; Childs DT; Ning JQ; Wang ZG; Liu FQ; Zhang ZY
    Light Sci Appl; 2018; 7():17170. PubMed ID: 30839527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A facile method for preparing Yb
    Zhang C; Zhang A; Liu T; Zhou L; Zheng J; Zuo Y; He Y; Li J
    RSC Adv; 2020 May; 10(30):17635-17641. PubMed ID: 35515610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The modulation on luminescence of Er3+-doped silicon-rich oxide films by the structure evolution of silicon nanoclusters.
    Jin L; Li D; Xiang L; Wang F; Yang D; Que D
    Nanoscale Res Lett; 2013 Jan; 8(1):34. PubMed ID: 23331713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Review of Mn-Doped Semiconductor Nanocrystals for Time-Resolved Luminescence Biosensing/Imaging.
    Sreenan B; Lee B; Wan L; Zeng R; Zhao J; Zhu X
    ACS Appl Nano Mater; 2022 Dec; 5(12):17413-17435. PubMed ID: 36874078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tight-binding calculations of the optical response of optimally P-doped Si nanocrystals: a model for localized surface plasmon resonance.
    Pi X; Delerue C
    Phys Rev Lett; 2013 Oct; 111(17):177402. PubMed ID: 24206519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effective supercontinuum generation by using highly nonlinear dispersion-shifted fiber incorporated with Si nanocrystals.
    Jeong S; Ju S; Kim Y; Watekar PR; Jeong H; Lee HJ; Boo S; Kim DY; Han WT
    J Nanosci Nanotechnol; 2012 Jan; 12(1):458-62. PubMed ID: 22524002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.