These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37850427)

  • 1. Machine learning-based model for accurate identification of druggable proteins using light extreme gradient boosting.
    Alghushairy O; Ali F; Alghamdi W; Khalid M; Alsini R; Asiry O
    J Biomol Struct Dyn; 2024; 42(22):12330-12341. PubMed ID: 37850427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. XGB-DrugPred: computational prediction of druggable proteins using eXtreme gradient boosting and optimized features set.
    Sikander R; Ghulam A; Ali F
    Sci Rep; 2022 Apr; 12(1):5505. PubMed ID: 35365726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target-DBPPred: An intelligent model for prediction of DNA-binding proteins using discrete wavelet transform based compression and light eXtreme gradient boosting.
    Ali F; Kumar H; Patil S; Kotecha K; Banjar A; Daud A
    Comput Biol Med; 2022 Jun; 145():105533. PubMed ID: 35447463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UbNiRF: A Hybrid Framework Based on Null Importances and Random Forest that Combines Multiple Features to Predict Ubiquitination Sites in
    Li X; Yuan Z; Chen Y
    Front Biosci (Landmark Ed); 2024 May; 29(5):197. PubMed ID: 38812315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of antifreeze proteins using machine learning.
    Khan A; Uddin J; Ali F; Ahmad A; Alghushairy O; Banjar A; Daud A
    Sci Rep; 2022 Nov; 12(1):20672. PubMed ID: 36450775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework.
    Gaffar S; Tayara H; Chong KT
    Comput Biol Med; 2024 May; 174():108438. PubMed ID: 38613893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PreDTIs: prediction of drug-target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques.
    Mahmud SMH; Chen W; Liu Y; Awal MA; Ahmed K; Rahman MH; Moni MA
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33709119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DP-BINDER: machine learning model for prediction of DNA-binding proteins by fusing evolutionary and physicochemical information.
    Ali F; Ahmed S; Swati ZNK; Akbar S
    J Comput Aided Mol Des; 2019 Jul; 33(7):645-658. PubMed ID: 31123959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of protein-protein interaction sites through eXtreme gradient boosting with kernel principal component analysis.
    Wang X; Zhang Y; Yu B; Salhi A; Chen R; Wang L; Liu Z
    Comput Biol Med; 2021 Jul; 134():104516. PubMed ID: 34119922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive Prediction of Lipocalin Proteins Using Artificial Intelligence Strategy.
    Zulfiqar H; Ahmed Z; Ma CY; Khan RS; Grace-Mercure BK; Yu XL; Zhang ZY
    Front Biosci (Landmark Ed); 2022 Mar; 27(3):84. PubMed ID: 35345316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GTB-PPI: Predict Protein-protein Interactions Based on L1-regularized Logistic Regression and Gradient Tree Boosting.
    Yu B; Chen C; Zhou H; Liu B; Ma Q
    Genomics Proteomics Bioinformatics; 2020 Oct; 18(5):582-592. PubMed ID: 33515750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou's pseudo-amino acid composition.
    Qiu W; Li S; Cui X; Yu Z; Wang M; Du J; Peng Y; Yu B
    J Theor Biol; 2018 Aug; 450():86-103. PubMed ID: 29678694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepStack-DTIs: Predicting Drug-Target Interactions Using LightGBM Feature Selection and Deep-Stacked Ensemble Classifier.
    Zhang Y; Jiang Z; Chen C; Wei Q; Gu H; Yu B
    Interdiscip Sci; 2022 Jun; 14(2):311-330. PubMed ID: 34731411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing ensemble learning algorithms and severity of illness scoring systems in cardiac intensive care units: a retrospective study.
    Nistal-Nuño B
    Einstein (Sao Paulo); 2024; 22():eAO0467. PubMed ID: 39417479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A boosting approach for prediction of protein-RNA binding residues.
    Tang Y; Liu D; Wang Z; Wen T; Deng L
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):465. PubMed ID: 29219069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ANOVA-particle swarm optimization-based feature selection and gradient boosting machine classifier for improved protein-protein interaction prediction.
    Mahapatra S; Sahu SS
    Proteins; 2022 Feb; 90(2):443-454. PubMed ID: 34528291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. StackedEnC-AOP: prediction of antioxidant proteins using transform evolutionary and sequential features based multi-scale vector with stacked ensemble learning.
    Rukh G; Akbar S; Rehman G; Alarfaj FK; Zou Q
    BMC Bioinformatics; 2024 Aug; 25(1):256. PubMed ID: 39098908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TargetDBP: Accurate DNA-Binding Protein Prediction Via Sequence-Based Multi-View Feature Learning.
    Hu J; Zhou XG; Zhu YH; Yu DJ; Zhang GJ
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1419-1429. PubMed ID: 30668479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Succinylation Site Prediction Based on Protein Sequences Using the IFS-LightGBM (BO) Model.
    Zhang L; Liu M; Qin X; Liu G
    Comput Math Methods Med; 2020; 2020():8858489. PubMed ID: 33224267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.