These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37851105)
1. The catalytic mechanism of direction-dependent interactions for 2,3-dihydroxybenzoate decarboxylase. Fan Y; Wu S; Shi J; Li X; Yang Y; Feng Y; Xue S Appl Microbiol Biotechnol; 2023 Dec; 107(24):7451-7462. PubMed ID: 37851105 [TBL] [Abstract][Full Text] [Related]
2. Biochemical characterization and substrate profiling of a reversible 2,3-dihydroxybenzoic acid decarboxylase for biocatalytic Kolbe-Schmitt reaction. Zhang X; Ren J; Yao P; Gong R; Wang M; Wu Q; Zhu D Enzyme Microb Technol; 2018 Jun; 113():37-43. PubMed ID: 29602385 [TBL] [Abstract][Full Text] [Related]
3. Metal Ion Promiscuity and Structure of 2,3-Dihydroxybenzoic Acid Decarboxylase of Aspergillus oryzae. Hofer G; Sheng X; Braeuer S; Payer SE; Plasch K; Goessler W; Faber K; Keller W; Himo F; Glueck SM Chembiochem; 2021 Feb; 22(4):652-656. PubMed ID: 33090643 [TBL] [Abstract][Full Text] [Related]
4. A pushed biosynthesis of 2,6-dihydroxybenzoic acid by the recombinant 2,3-dihydroxybenzoic acid decarboxylase immobilized on novel amino-modified lignin-containing cellulose nanocrystal aerogel. Wang X; Zhou M; Yao T; Li Y; Xu J; Xu N; Liu X Bioresour Technol; 2024 Feb; 394():130218. PubMed ID: 38109976 [TBL] [Abstract][Full Text] [Related]
5. 2,3-Dihydroxybenzoic Acid Decarboxylase from Fusarium oxysporum: Crystal Structures and Substrate Recognition Mechanism. Song M; Zhang X; Liu W; Feng J; Cui Y; Yao P; Wang M; Guo RT; Wu Q; Zhu D Chembiochem; 2020 Oct; 21(20):2950-2956. PubMed ID: 32421914 [TBL] [Abstract][Full Text] [Related]
6. Biocatalytic carboxylation of phenol derivatives: kinetics and thermodynamics of the biological Kolbe-Schmitt synthesis. Pesci L; Glueck SM; Gurikov P; Smirnova I; Faber K; Liese A FEBS J; 2015 Apr; 282(7):1334-45. PubMed ID: 25652582 [TBL] [Abstract][Full Text] [Related]
7. Pushing the equilibrium of regio-complementary carboxylation of phenols and hydroxystyrene derivatives. Wuensch C; Schmidt N; Gross J; Grischek B; Glueck SM; Faber K J Biotechnol; 2013 Nov; 168(3):264-70. PubMed ID: 23880442 [TBL] [Abstract][Full Text] [Related]
8. Reversible and nonoxidative gamma-resorcylic acid decarboxylase: characterization and gene cloning of a novel enzyme catalyzing carboxylation of resorcinol, 1,3-dihydroxybenzene, from Rhizobium radiobacter. Ishii Y; Narimatsu Y; Iwasaki Y; Arai N; Kino K; Kirimura K Biochem Biophys Res Commun; 2004 Nov; 324(2):611-20. PubMed ID: 15474471 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the Substrate Scope of Benzoic Acid (De)carboxylases According to Chemical and Biochemical Parameters. Pesci L; Kara S; Liese A Chembiochem; 2016 Oct; 17(19):1845-1850. PubMed ID: 27505856 [TBL] [Abstract][Full Text] [Related]
10. Purification and characterization of an oxygen-sensitive reversible 4-hydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. He Z; Wiegel J Eur J Biochem; 1995 Apr; 229(1):77-82. PubMed ID: 7744052 [TBL] [Abstract][Full Text] [Related]
11. (De)carboxylation mechanisms of heteroaromatic substrates catalyzed by prenylated FMN-dependent UbiD decarboxylases: An in-silico study. Wen K; Tao Y; Jiang W; Jiang L; Zhu J; Li Q Int J Biol Macromol; 2024 Mar; 260(Pt 1):129294. PubMed ID: 38211929 [TBL] [Abstract][Full Text] [Related]
12. Purification and characterization of an oxygen-sensitive, reversible 3,4-dihydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. He Z; Wiegel J J Bacteriol; 1996 Jun; 178(12):3539-43. PubMed ID: 8655551 [TBL] [Abstract][Full Text] [Related]
13. Screening and characterization of a novel reversible 4-hydroxyisophthalic acid decarboxylase from Cystobasidium slooffiae HTK3. Aono R; Yoshihara T; Nishida H; Kino K Biosci Biotechnol Biochem; 2021 Jun; 85(7):1658-1664. PubMed ID: 33942852 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of metal-dependent non-redox decarboxylases from quantum chemical calculations. Sheng X; Himo F Comput Struct Biotechnol J; 2021; 19():3176-3186. PubMed ID: 34141138 [TBL] [Abstract][Full Text] [Related]
15. Non-Oxidative Enzymatic (De)Carboxylation of (Hetero)Aromatics and Acrylic Acid Derivatives. Payer SE; Faber K; Glueck SM Adv Synth Catal; 2019 Jun; 361(11):2402-2420. PubMed ID: 31379472 [TBL] [Abstract][Full Text] [Related]
16. Purification and characterization of 2,6-dihydroxybenzoate decarboxylase reversibly catalyzing nonoxidative decarboxylation. Yoshida T; Hayakawa Y; Matsui T; Nagasawa T Arch Microbiol; 2004 Jun; 181(6):391-7. PubMed ID: 15118811 [TBL] [Abstract][Full Text] [Related]
17. De novo biosynthesis of 2-hydroxyterephthalic acid, the monomer for high-performance hydroxyl modified PBO fiber, by enzymatic Kolbe-Schmitt reaction with CO Zhou Y; Zhang S; Huang S; Fan X; Su H; Tan T Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):179. PubMed ID: 37986026 [TBL] [Abstract][Full Text] [Related]
18. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates. Schütz A; Golbik R; König S; Hübner G; Tittmann K Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904 [TBL] [Abstract][Full Text] [Related]
19. Screening, gene cloning, and characterization of orsellinic acid decarboxylase from Arthrobacter sp. K8 for regio-selective carboxylation of resorcinol derivatives. Kino K; Hirokawa Y; Gawasawa R; Murase R; Tsuchihashi R; Hara R J Biotechnol; 2020 Nov; 323():128-135. PubMed ID: 32828832 [TBL] [Abstract][Full Text] [Related]
20. Amine-Mediated Enzymatic Carboxylation of Phenols Using CO Pesci L; Gurikov P; Liese A; Kara S Biotechnol J; 2017 Dec; 12(12):. PubMed ID: 28862371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]