These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 37851111)
1. Diversity and evolution of serotonergic cells in taste buds of elasmobranchs and ancestral actinopterygian fish. Ikenaga T; Nakamura T; Tajiri T; Tsuji M; Kato DI; Ineno T; Kobayashi Y; Tsutsui N; Kiyohara S Cell Tissue Res; 2023 Dec; 394(3):431-439. PubMed ID: 37851111 [TBL] [Abstract][Full Text] [Related]
2. Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates. Barreiro-Iglesias A; Villar-Cerviño V; Villar-Cheda B; Anadón R; Rodicio MC J Comp Neurol; 2008 Dec; 511(4):438-53. PubMed ID: 18831528 [TBL] [Abstract][Full Text] [Related]
3. Localization of serotonin in taste buds: a comparative study in four vertebrates. Kim DJ; Roper SD J Comp Neurol; 1995 Mar; 353(3):364-70. PubMed ID: 7751436 [TBL] [Abstract][Full Text] [Related]
4. Possible role of serotonin in Merkel-like basal cells of the taste buds of the frog, Rana nigromaculata. Hamasaki K; Seta Y; Yamada K; Toyoshima K J Anat; 1998 Nov; 193 ( Pt 4)(Pt 4):599-610. PubMed ID: 10029193 [TBL] [Abstract][Full Text] [Related]
5. Calbindin D28k-like immunoreactivity in the developing and regenerating circumvallate papilla of the rat. Miyawaki Y; Morisaki I; Tabata MJ; Maeda T; Kurisu K; Wakisaka S Cell Tissue Res; 1998 Jan; 291(1):81-90. PubMed ID: 9394045 [TBL] [Abstract][Full Text] [Related]
6. Evolutionary origins of taste buds: phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors. Kirino M; Parnes J; Hansen A; Kiyohara S; Finger TE Open Biol; 2013 Mar; 3(3):130015. PubMed ID: 23466675 [TBL] [Abstract][Full Text] [Related]
7. The gustatory system of lampreys. Barreiro-Iglesias A; Anadón R; Rodicio MC Brain Behav Evol; 2010; 75(4):241-50. PubMed ID: 20664239 [TBL] [Abstract][Full Text] [Related]
8. Calbindin D28k-like immunoreactivity in the gustatory epithelium in the rat. Miyawaki Y; Morisaki I; Tabata MJ; Kurisu K; Wakisaka S Neurosci Lett; 1996 Aug; 214(1):29-32. PubMed ID: 8873124 [TBL] [Abstract][Full Text] [Related]
9. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster after sensory denervation. Ganchrow D; Ganchrow JR; Verdin-Alcazar M; Whitehead MC J Comp Neurol; 2003 Jan; 455(1):25-39. PubMed ID: 12454994 [TBL] [Abstract][Full Text] [Related]
10. Distinct expression pattern of insulin-like growth factor family in rodent taste buds. Suzuki Y; Takeda M; Sakakura Y; Suzuki N J Comp Neurol; 2005 Jan; 482(1):74-84. PubMed ID: 15612015 [TBL] [Abstract][Full Text] [Related]
11. Are there efferent synapses in fish taste buds? Reutter K; Witt M J Neurocytol; 2004 Dec; 33(6):647-56. PubMed ID: 16217620 [TBL] [Abstract][Full Text] [Related]
12. Ultrastructure of the taste buds in the blind cave fish Astyanax jordani ("Anoptichthys") and the sighted river fish Astyanax mexicanus (Teleostei, Characidae). Boudriot F; Reutter K J Comp Neurol; 2001 Jun; 434(4):428-44. PubMed ID: 11343291 [TBL] [Abstract][Full Text] [Related]
13. Organization of the orexin/hypocretin system in the brain of two basal actinopterygian fishes, the cladistians Polypterus senegalus and Erpetoichthys calabaricus. López JM; Sanz-Morello B; González A Peptides; 2014 Nov; 61():23-37. PubMed ID: 25169954 [TBL] [Abstract][Full Text] [Related]
14. Expression of Sox2 in mouse taste buds and its relation to innervation. Suzuki Y Cell Tissue Res; 2008 Jun; 332(3):393-401. PubMed ID: 18379823 [TBL] [Abstract][Full Text] [Related]
15. Distribution, Innervation, and Cellular Organization of Taste Buds in the Sea Catfish, Plotosus japonicus. Nakamura T; Matsuyama N; Kirino M; Kasai M; Kiyohara S; Ikenaga T Brain Behav Evol; 2017; 89(3):209-218. PubMed ID: 28502972 [TBL] [Abstract][Full Text] [Related]
17. Organization of the catecholaminergic systems in two basal actinopterygian fishes, Polypterus senegalus and Erpetoichthys calabaricus (Actinopterygii: Cladistia). López JM; Lozano D; Morona R; González A J Comp Neurol; 2019 Feb; 527(2):437-461. PubMed ID: 30281776 [TBL] [Abstract][Full Text] [Related]
18. Heterogeneity of fish taste bud ultrastructure as demonstrated in the holosteans Amia calva and Lepisosteus oculatus. Reutter K; Boudriot F; Witt M Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1225-8. PubMed ID: 11079403 [TBL] [Abstract][Full Text] [Related]
19. Immunohistochemical distribution of growth-associated protein 43 (GAP-43) in developing rat nasoincisor papilla. El-Sharaby A; Ueda K; Wakisaka S Anat Rec A Discov Mol Cell Evol Biol; 2004 Apr; 277(2):370-83. PubMed ID: 15052664 [TBL] [Abstract][Full Text] [Related]
20. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster. Ganchrow D; Ganchrow JR; Verdin-Alcazar M; Whitehead MC J Comp Neurol; 2003 Jan; 455(1):11-24. PubMed ID: 12454993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]