BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37851507)

  • 1. The relationship between EMG high frequency and low frequency band amplitude changes correlates with tissue inorganic phosphate levels.
    Habich M; Pawlinski B; Lorenc K; Sady M; Siewruk K; Zielenkiewicz P; Gajewski Z; Poznanski J; Paczek L; Szczesny P
    Acta Biochim Pol; 2023 Oct; 70(4):951-954. PubMed ID: 37851507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous electromyography and 31P nuclear magnetic resonance spectroscopy--with application to muscle fatigue.
    Vestergaard-Poulsen P; Thomsen C; Sinkjaer T; Stubgaard M; Rosenfalck A; Henriksen O
    Electroencephalogr Clin Neurophysiol; 1992 Dec; 85(6):402-11. PubMed ID: 1282459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromyogram spectrum changes during sustained contraction related to proton and diprotonated inorganic phosphate accumulation: a 31P nuclear magnetic resonance study on human calf muscles.
    Laurent D; Portero P; Goubel F; Rossi A
    Eur J Appl Physiol Occup Physiol; 1993; 66(3):263-8. PubMed ID: 8386617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo alterations of high-energy phosphates and intracellular pH during reversible ischemia in pigs: a 31P magnetic resonance spectroscopy study.
    Camacho SA; Lanzer P; Toy BJ; Gober J; Valenza M; Botvinick EH; Weiner MW
    Am Heart J; 1988 Sep; 116(3):701-8. PubMed ID: 3414485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo 31P nuclear magnetic resonance spectroscopy of skeletal muscle energetics in endotoxemic rats: a prospective, randomized study.
    Gilles RJ; D'Orio V; Ciancabilla F; Carlier PG
    Crit Care Med; 1994 Mar; 22(3):499-505. PubMed ID: 8125002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal control of muscle synergies is linked with alpha-band neural drive.
    Laine CM; Cohn BA; Valero-Cuevas FJ
    J Physiol; 2021 Jul; 599(13):3385-3402. PubMed ID: 33963545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-energy phosphate metabolism in the calf muscle during moderate isotonic exercise under different degrees of cuff compression: a phosphorus 31 magnetic resonance spectroscopy study.
    Greiner A; Esterhammer R; Pilav S; Arnold W; Santner W; Neuhauser B; Fraedrich G; Jaschke WR; Schocke MF
    J Vasc Surg; 2005 Aug; 42(2):259-67. PubMed ID: 16102624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of 31P magnetic resonance spectroscopy to the study of athletic performance.
    McCully KK; Kent JA; Chance B
    Sports Med; 1988 May; 5(5):312-21. PubMed ID: 3387735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 31P-NMR studies of phosphate metabolites in intact red and white swimming muscles of cod (Gadus morhua L.).
    Jørgensen L; Grasdalen H
    Comp Biochem Physiol B; 1986; 84(4):447-50. PubMed ID: 3757479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy metabolism of the untrained muscle of elite runners as observed by 31P magnetic resonance spectroscopy: evidence suggesting a genetic endowment for endurance exercise.
    Park JH; Brown RL; Park CR; Cohn M; Chance B
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8780-4. PubMed ID: 3194388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic changes in reflex sympathetic dystrophy: a 31P NMR spectroscopy study.
    Heerschap A; den Hollander JA; Reynen H; Goris RJ
    Muscle Nerve; 1993 Apr; 16(4):367-73. PubMed ID: 8455649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous metabolic changes in the calf muscle of the rat during ischaemia-reperfusion: in vivo analysis by 31P nuclear magnetic resonance chemical shift imaging and 1H magnetic resonance imaging.
    Morikawa S; Inubushi T; Kito K
    Cardiovasc Surg; 1993 Aug; 1(4):337-42. PubMed ID: 8076056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of hypophosphatemia on muscle metabolism after exercise in pigs.
    Håglin L; Essén-Gustavsson B
    Acta Vet Scand; 1992; 33(2):139-45. PubMed ID: 1502997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle pain after exercise is linked with an inorganic phosphate increase as shown by 31P NMR.
    Aldridge R; Cady EB; Jones DA; Obletter G
    Biosci Rep; 1986 Jul; 6(7):663-7. PubMed ID: 3779042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics studies of muscles of different types.
    Kushmerick MJ
    Basic Res Cardiol; 1987; 82 Suppl 2():17-30. PubMed ID: 3663016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 31P NMR study of postmortem metabolism in porcine and bovine muscles.
    Uhrín P; Litpaj T
    Gen Physiol Biophys; 1991 Feb; 10(1):83-93. PubMed ID: 1869045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue of the erector spinae muscles. A quantitative assessment using "frequency banding" of the surface electromyography signal.
    Dolan P; Mannion AF; Adams MA
    Spine (Phila Pa 1976); 1995 Jan; 20(2):149-59. PubMed ID: 7716619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive, nondestructive approaches to cell bioenergetics.
    Chance B; Eleff S; Leigh JS
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7430-4. PubMed ID: 6938983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 31P NMR study of phosphorus metabolites in fast and slow muscles.
    Uhrín P; Liptaj T
    Int J Biochem; 1990; 22(10):1133-8. PubMed ID: 2289618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous surface electromyography (SEMG) and 31P-MR spectroscopy measurements of the lumbar back muscle during isometric exercise.
    Rzanny R; Grassme R; Reichenbach JR; Rottenbach M; Petrovitch A; Kaiser WA; Scholle HC
    J Neurosci Methods; 2004 Feb; 133(1-2):143-52. PubMed ID: 14757355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.