These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37851675)

  • 41. Artificial kagome spin ice: dimensional reduction, avalanche control and emergent magnetic monopoles.
    Hügli RV; Duff G; O'Conchuir B; Mengotti E; Rodríguez AF; Nolting F; Heyderman LJ; Braun HB
    Philos Trans A Math Phys Eng Sci; 2012 Dec; 370(1981):5767-82. PubMed ID: 23166379
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Local Excitation of Kagome Spin Ice Magnetism Seen by Scanning Tunneling Microscopy.
    Deng H; Yang T; Liu G; Liu L; Zhao L; Wang W; Li T; Song W; Neupert T; Liu XR; Shao J; Zhao YY; Xu N; Deng H; Huang L; Zhao Y; Zhang L; Mei JW; Wu L; He J; Liu Q; Liu C; Yin JX
    Phys Rev Lett; 2024 Jul; 133(4):046503. PubMed ID: 39121416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Aharanov-Bohm effect, magnetic monopoles and reversal in spin-ice lattices.
    Pollard SD; Zhu Y
    Microscopy (Oxf); 2013 Jun; 62 Suppl 1():S55-64. PubMed ID: 23549453
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermally and field-driven mobility of emergent magnetic charges in square artificial spin ice.
    Morley SA; Porro JM; Hrabec A; Rosamond MC; Venero DA; Linfield EH; Burnell G; Im MY; Fischer P; Langridge S; Marrows CH
    Sci Rep; 2019 Nov; 9(1):15989. PubMed ID: 31690773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Realization of the kagome spin ice state in a frustrated intermetallic compound.
    Zhao K; Deng H; Chen H; Ross KA; Petříček V; Günther G; Russina M; Hutanu V; Gegenwart P
    Science; 2020 Mar; 367(6483):1218-1223. PubMed ID: 32165582
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spin-Peierls instability of the U(1) Dirac spin liquid.
    Seifert UFP; Willsher J; Drescher M; Pollmann F; Knolle J
    Nat Commun; 2024 Aug; 15(1):7110. PubMed ID: 39160157
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low-energy electrodynamics of novel spin excitations in the quantum spin ice Yb₂Ti₂O₇.
    Pan L; Kim SK; Ghosh A; Morris CM; Ross KA; Kermarrec E; Gaulin BD; Koohpayeh SM; Tchernyshyov O; Armitage NP
    Nat Commun; 2014 Sep; 5():4970. PubMed ID: 25233136
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence for dynamic kagome ice.
    Lhotel E; Petit S; Ciomaga Hatnean M; Ollivier J; Mutka H; Ressouche E; Lees MR; Balakrishnan G
    Nat Commun; 2018 Sep; 9(1):3786. PubMed ID: 30224640
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nonequilibrium generation of charge defects in kagome spin ice under slow cooling.
    Fan Z; Chern GW
    Phys Rev E; 2024 May; 109(5-1):054133. PubMed ID: 38907488
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the proximate Kitaev quantum-spin liquid α-RuCl
    Loidl A; Lunkenheimer P; Tsurkan V
    J Phys Condens Matter; 2021 Aug; 33(44):. PubMed ID: 34371492
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fractionalized Excitations Revealed by Entanglement Entropy.
    Hu WJ; Zhang Y; Nevidomskyy AH; Dagotto E; Si Q; Lai HH
    Phys Rev Lett; 2020 Jun; 124(23):237201. PubMed ID: 32603177
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Measurement of the charge and current of magnetic monopoles in spin ice.
    Bramwell ST; Giblin SR; Calder S; Aldus R; Prabhakaran D; Fennell T
    Nature; 2009 Oct; 461(7266):956-9. PubMed ID: 19829376
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The nature of spin excitations in the one-third magnetization plateau phase of Ba
    Kamiya Y; Ge L; Hong T; Qiu Y; Quintero-Castro DL; Lu Z; Cao HB; Matsuda M; Choi ES; Batista CD; Mourigal M; Zhou HD; Ma J
    Nat Commun; 2018 Jul; 9(1):2666. PubMed ID: 29991805
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantum Versus Classical Spin Fragmentation in Dipolar Kagome Ice Ho
    Dun Z; Bai X; Paddison JAM; Hollingworth E; Butch NP; Cruz CD; Stone MB; Hong T; Demmel F; Mourigal M; Zhou H
    Phys Rev X; 2020 Jul; 10(3):. PubMed ID: 37731951
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanometre-scale probing of spin waves using single-electron spins.
    van der Sar T; Casola F; Walsworth R; Yacoby A
    Nat Commun; 2015 Aug; 6():7886. PubMed ID: 26249673
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantum fluctuations in spin-ice-like Pr2Zr2O7.
    Kimura K; Nakatsuji S; Wen JJ; Broholm C; Stone MB; Nishibori E; Sawa H
    Nat Commun; 2013; 4():1934. PubMed ID: 23770751
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Magnetic phase transitions and monopole excitations in spin ice under uniaxial pressure: A Monte Carlo simulation.
    Xie YL; Lin L; Yan ZB; Liu JM
    J Appl Phys; 2015 May; 117(17):17C714. PubMed ID: 25784777
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr
    Tsurkan V; Zherlitsyn S; Prodan L; Felea V; Cong PT; Skourski Y; Wang Z; Deisenhofer J; von Nidda HK; Wosnitza J; Loidl A
    Sci Adv; 2017 Mar; 3(3):e1601982. PubMed ID: 28345038
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Topological frustration of artificial spin ice.
    Drisko J; Marsh T; Cumings J
    Nat Commun; 2017 Jan; 8():14009. PubMed ID: 28084314
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spin-State Ice in Elastically Frustrated Spin-Crossover Materials.
    Cruddas J; Powell BJ
    J Am Chem Soc; 2019 Dec; 141(50):19790-19799. PubMed ID: 31714072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.