These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 37851806)
1. One-step rolling fabrication of VO Wu B; Zhang Z; Chen B; Zheng Z; You C; Liu C; Li X; Wang J; Wang Y; Song E; Cui J; An Z; Huang G; Mei Y Sci Adv; 2023 Oct; 9(42):eadi7805. PubMed ID: 37851806 [TBL] [Abstract][Full Text] [Related]
2. Reconfigurable Vanadium Dioxide Nanomembranes and Microtubes with Controllable Phase Transition Temperatures. Tian Z; Xu B; Hsu B; Stan L; Yang Z; Mei Y Nano Lett; 2018 May; 18(5):3017-3023. PubMed ID: 29633849 [TBL] [Abstract][Full Text] [Related]
6. High sensitivity bolometers based on metal nanoantenna dimers with a nanogap filled with vanadium dioxide. Lee D; Kim D; Kim DS; Park HR; Sohn C; Namgung S; Chung K; Jun YC; Kim DK; Choo H; Roh YG Sci Rep; 2021 Aug; 11(1):15863. PubMed ID: 34354170 [TBL] [Abstract][Full Text] [Related]
7. Metamaterial microbolometers for multi-spectral infrared polarization imaging. Jiang S; Li J; Li J; Lai J; Yi F Opt Express; 2022 Mar; 30(6):9065-9087. PubMed ID: 35299344 [TBL] [Abstract][Full Text] [Related]
8. Self-Rolled-Up Ultrathin Single-Crystalline Silicon Nanomembranes for On-Chip Tubular Polarization Photodetectors. Wu B; Zhang Z; Zheng Z; Cai T; You C; Liu C; Li X; Wang Y; Wang J; Li H; Song E; Cui J; Huang G; Mei Y Adv Mater; 2023 Dec; 35(52):e2306715. PubMed ID: 37721970 [TBL] [Abstract][Full Text] [Related]
9. Highly Sensitive and Ultra-Broadband VO Zhang Y; Wang X; Zhou Y; Lai H; Liu P; Chen H; Wang X; Xie W Nano Lett; 2022 Jan; 22(1):485-493. PubMed ID: 34967644 [TBL] [Abstract][Full Text] [Related]
10. Readout IC Architectures and Strategies for Uncooled Micro-Bolometers Infrared Focal Plane Arrays: A Review. Fusetto S; Aprile A; Malcovati P; Bonizzoni E Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904929 [TBL] [Abstract][Full Text] [Related]
12. Dual-gated bilayer graphene hot-electron bolometer. Yan J; Kim MH; Elle JA; Sushkov AB; Jenkins GS; Milchberg HM; Fuhrer MS; Drew HD Nat Nanotechnol; 2012 Jun; 7(7):472-8. PubMed ID: 22659611 [TBL] [Abstract][Full Text] [Related]
13. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance. Sassi U; Parret R; Nanot S; Bruna M; Borini S; De Fazio D; Zhao Z; Lidorikis E; Koppens FH; Ferrari AC; Colli A Nat Commun; 2017 Jan; 8():14311. PubMed ID: 28139766 [TBL] [Abstract][Full Text] [Related]
14. Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out. Efetov DK; Shiue RJ; Gao Y; Skinner B; Walsh ED; Choi H; Zheng J; Tan C; Grosso G; Peng C; Hone J; Fong KC; Englund D Nat Nanotechnol; 2018 Sep; 13(9):797-801. PubMed ID: 29892017 [TBL] [Abstract][Full Text] [Related]
15. A comparative study of 1/f noise and temperature coefficient of resistance in multiwall and single-wall carbon nanotube bolometers. Lu R; Kamal R; Wu JZ Nanotechnology; 2011 Jul; 22(26):265503. PubMed ID: 21576772 [TBL] [Abstract][Full Text] [Related]
16. Terahertz real-time imaging uncooled array based on antenna- and cavity-coupled bolometers. Simoens F; Meilhan J Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2012):20130111. PubMed ID: 24567477 [TBL] [Abstract][Full Text] [Related]
17. Gate-tunable bolometer based on strongly coupled graphene mechanical resonators. Chen H; Zhao ZF; Li WJ; Cheng ZD; Suo JJ; Li BL; Guo ML; Fan BY; Zhou Q; Wang Y; Song HZ; Niu XB; Li XY; Arutyunov KY; Guo GC; Deng GW Opt Lett; 2023 Jan; 48(1):81-84. PubMed ID: 36563374 [TBL] [Abstract][Full Text] [Related]