These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37851949)

  • 1. Mechanism of Fluoride Ion Encapsulation by Magnesium Ions in a Bacterial Riboswitch.
    Kumar S; Reddy G
    J Phys Chem B; 2023 Nov; 127(43):9267-9281. PubMed ID: 37851949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch.
    Ren A; Rajashankar KR; Patel DJ
    Nature; 2012 May; 486(7401):85-9. PubMed ID: 22678284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnesium Ion-Driven Folding and Conformational Switching Kinetics of Tetracycline Binding Aptamer: Implications for in vivo Riboswitch Engineering.
    Kaiser C; Vogel M; Appel B; Weigand J; Müller S; Suess B; Wachtveitl J
    J Mol Biol; 2023 Oct; 435(20):168253. PubMed ID: 37640152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Base-Pair Opening Dynamics Study of Fluoride Riboswitch in the
    Lee J; Sung SE; Lee J; Kang JY; Lee JH; Choi BS
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33810132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
    Noeske J; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(15):5262-73. PubMed ID: 17686787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches.
    Baird NJ; Ferré-D'Amaré AR
    RNA; 2013 Feb; 19(2):167-76. PubMed ID: 23249744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular insights into the ligand-controlled organization of the SAM-I riboswitch.
    Heppell B; Blouin S; Dussault AM; Mulhbacher J; Ennifar E; Penedo JC; Lafontaine DA
    Nat Chem Biol; 2011 Jun; 7(6):384-92. PubMed ID: 21532599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnesium ions mediate ligand binding and conformational transition of the SAM/SAH riboswitch.
    Hu G; Zhou HX
    Commun Biol; 2023 Jul; 6(1):791. PubMed ID: 37524918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An uncommon [K
    Trachman RJ; Ferré-D'Amaré AR
    RNA; 2021 Oct; 27(10):1257-1264. PubMed ID: 34257148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs.
    Wakeman CA; Ramesh A; Winkler WC
    J Mol Biol; 2009 Sep; 392(3):723-35. PubMed ID: 19619558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mg(2+) shifts ligand-mediated folding of a riboswitch from induced-fit to conformational selection.
    Suddala KC; Wang J; Hou Q; Walter NG
    J Am Chem Soc; 2015 Nov; 137(44):14075-83. PubMed ID: 26471732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into xanthine riboswitch structure and metal ion-mediated ligand recognition.
    Xu X; Egger M; Chen H; Bartosik K; Micura R; Ren A
    Nucleic Acids Res; 2021 Jul; 49(12):7139-7153. PubMed ID: 34125892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain.
    Buck J; Noeske J; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2010 Jul; 38(12):4143-53. PubMed ID: 20200045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution.
    Haller A; Altman RB; Soulière MF; Blanchard SC; Micura R
    Proc Natl Acad Sci U S A; 2013 Mar; 110(11):4188-93. PubMed ID: 23440214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudoknot preorganization of the preQ1 class I riboswitch.
    Santner T; Rieder U; Kreutz C; Micura R
    J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of pseudoknot base pairing on cotranscriptional structural switching of the fluoride riboswitch.
    Hertz LM; White EN; Kuznedelov K; Cheng L; Yu AM; Kakkaramadam R; Severinov K; Chen A; Lucks JB
    Nucleic Acids Res; 2024 May; 52(8):4466-4482. PubMed ID: 38567721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative and directional folding of the preQ1 riboswitch aptamer domain.
    Feng J; Walter NG; Brooks CL
    J Am Chem Soc; 2011 Mar; 133(12):4196-9. PubMed ID: 21375305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Simulations of the Aptamer Domain of Guanidinium Ion Binding Riboswitch
    Negi I; Mahmi AS; Seelam Prabhakar P; Sharma P
    J Chem Inf Model; 2021 Oct; 61(10):5243-5255. PubMed ID: 34609872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chelated Magnesium Logic Gate Regulates Riboswitch Pseudoknot Formation.
    Sarkar R; Jaiswar A; Hennelly SP; Onuchic JN; Sanbonmatsu KY; Roy S
    J Phys Chem B; 2021 Jun; 125(24):6479-6490. PubMed ID: 34106719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.