These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37851949)

  • 21. Chelated Magnesium Logic Gate Regulates Riboswitch Pseudoknot Formation.
    Sarkar R; Jaiswar A; Hennelly SP; Onuchic JN; Sanbonmatsu KY; Roy S
    J Phys Chem B; 2021 Jun; 125(24):6479-6490. PubMed ID: 34106719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissecting electrostatic screening, specific ion binding, and ligand binding in an energetic model for glycine riboswitch folding.
    Lipfert J; Sim AY; Herschlag D; Doniach S
    RNA; 2010 Apr; 16(4):708-19. PubMed ID: 20194520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential effects of metal ion induced two-state allostery on the regulatory mechanism of add adenine riboswitch.
    Bao L; Kang WB; Xiao Y
    Commun Biol; 2022 Oct; 5(1):1120. PubMed ID: 36273041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequence-dependent folding landscapes of adenine riboswitch aptamers.
    Lin JC; Hyeon C; Thirumalai D
    Phys Chem Chem Phys; 2014 Apr; 16(14):6376-82. PubMed ID: 24366448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain.
    Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H
    RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal Ion-Mediated Nucleobase Recognition by the ZTP Riboswitch.
    Trausch JJ; Marcano-Velázquez JG; Matyjasik MM; Batey RT
    Chem Biol; 2015 Jul; 22(7):829-37. PubMed ID: 26144884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An anionic ligand snap-locks a long-range interaction in a magnesium-folded riboswitch.
    Yadav R; Widom JR; Chauvier A; Walter NG
    Nat Commun; 2022 Jan; 13(1):207. PubMed ID: 35017489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.
    Gilbert SD; Stoddard CD; Wise SJ; Batey RT
    J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Force field dependence of riboswitch dynamics.
    Hanke CA; Gohlke H
    Methods Enzymol; 2015; 553():163-91. PubMed ID: 25726465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The expression platform and the aptamer: cooperativity between Mg2+ and ligand in the SAM-I riboswitch.
    Hennelly SP; Novikova IV; Sanbonmatsu KY
    Nucleic Acids Res; 2013 Feb; 41(3):1922-35. PubMed ID: 23258703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA.
    Knappenberger AJ; Reiss CW; Strobel SA
    Elife; 2018 Jun; 7():. PubMed ID: 29877798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into ligand binding to PreQ1 Riboswitch Aptamer from molecular dynamics simulations.
    Gong Z; Zhao Y; Chen C; Duan Y; Xiao Y
    PLoS One; 2014; 9(3):e92247. PubMed ID: 24663240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TPP riboswitch aptamer: Role of Mg
    Padhi S; Pradhan M; Bung N; Roy A; Bulusu G
    J Mol Graph Model; 2019 May; 88():282-291. PubMed ID: 30818079
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mg(2+)-induced conformational changes in the btuB riboswitch from E. coli.
    Choudhary PK; Sigel RK
    RNA; 2014 Jan; 20(1):36-45. PubMed ID: 24243114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Folding of the adenine riboswitch.
    Lemay JF; Penedo JC; Tremblay R; Lilley DM; Lafontaine DA
    Chem Biol; 2006 Aug; 13(8):857-68. PubMed ID: 16931335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography.
    Stagno JR; Liu Y; Bhandari YR; Conrad CE; Panja S; Swain M; Fan L; Nelson G; Li C; Wendel DR; White TA; Coe JD; Wiedorn MO; Knoska J; Oberthuer D; Tuckey RA; Yu P; Dyba M; Tarasov SG; Weierstall U; Grant TD; Schwieters CD; Zhang J; Ferré-D'Amaré AR; Fromme P; Draper DE; Liang M; Hunter MS; Boutet S; Tan K; Zuo X; Ji X; Barty A; Zatsepin NA; Chapman HN; Spence JC; Woodson SA; Wang YX
    Nature; 2017 Jan; 541(7636):242-246. PubMed ID: 27841871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches.
    Sherman EM; Esquiaqui J; Elsayed G; Ye JD
    RNA; 2012 Mar; 18(3):496-507. PubMed ID: 22279151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.