These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 37852217)

  • 81. Efficient Self-Driven Photodetectors Featuring a Mixed-Dimensional van der Waals Heterojunction Formed from a CdS Nanowire and a MoTe
    Lu MY; Chang YT; Chen HJ
    Small; 2018 Oct; 14(40):e1802302. PubMed ID: 30198180
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Highly Polarization-Sensitive, Broadband, Self-Powered Photodetector Based on Graphene/PdSe
    Wu D; Guo J; Du J; Xia C; Zeng L; Tian Y; Shi Z; Tian Y; Li XJ; Tsang YH; Jie J
    ACS Nano; 2019 Sep; 13(9):9907-9917. PubMed ID: 31361122
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A high performance self-powered photodetector based on a 1D Te-2D WS
    Han L; Yang M; Wen P; Gao W; Huo N; Li J
    Nanoscale Adv; 2021 May; 3(9):2657-2665. PubMed ID: 36134149
    [TBL] [Abstract][Full Text] [Related]  

  • 84. InSe:Ge-doped InSe van der Waals heterostructure to enhance photogenerated carrier separation for self-powered photoelectrochemical-type photodetectors.
    Liao L; Wu B; Kovalska E; Oliveira FM; Azadmanjiri J; Mazánek V; Valdman L; Spejchalová L; Xu C; Levinský P; Hejtmánek J; Sofer Z
    Nanoscale; 2022 Apr; 14(14):5412-5424. PubMed ID: 35319556
    [TBL] [Abstract][Full Text] [Related]  

  • 85. High-performance broadband flexible photodetector based on Gd
    Zhang Z; Ji P; Li S; Wang F; He S; Cheng Y; Zhao S; Li K; Wang X; Wang Y; Yang S
    Microsyst Nanoeng; 2023; 9():84. PubMed ID: 37408537
    [TBL] [Abstract][Full Text] [Related]  

  • 86. TiO
    Gao Y; Xu J; Shi S; Dong H; Cheng Y; Wei C; Zhang X; Yin S; Li L
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11269-11279. PubMed ID: 29558104
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Highly Efficient Infrared Photodetection in a Gate-Controllable Van der Waals Heterojunction with Staggered Bandgap Alignment.
    Jo SH; Lee HW; Shim J; Heo K; Kim M; Song YJ; Park JH
    Adv Sci (Weinh); 2018 Apr; 5(4):1700423. PubMed ID: 29721405
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Self-Powered, High-Speed and Visible-Near Infrared Response of MoO(3-x)/n-Si Heterojunction Photodetector with Enhanced Performance by Interfacial Engineering.
    Zhao C; Liang Z; Su M; Liu P; Mai W; Xie W
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25981-90. PubMed ID: 26544078
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The improved photoresponse properties of self-powered NiO/ZnO heterojunction arrays UV photodetectors with designed tunable Fermi level of ZnO.
    Wei C; Xu J; Shi S; Bu Y; Cao R; Chen J; Xiang J; Zhang X; Li L
    J Colloid Interface Sci; 2020 Oct; 577():279-289. PubMed ID: 32485411
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Mixed-Dimensional van der Waals Heterostructure for High-Performance and Air-Stable Perovskite Nanowire Photodetectors.
    Wang G; Han B; Mak CH; Liu J; Liu B; Liu P; Hao X; Wang H; Ma S; Xu B; Hsu HY
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55183-55191. PubMed ID: 36469437
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Disentangling the Role of the SnO Layer on the Pyro-Phototronic Effect in ZnO-Based Self-Powered Photodetectors.
    Vieira EMF; Silva JPB; Gwozdz K; Kaim A; Gomes NM; Chahboun A; Gomes MJM; Correia JH
    Small; 2023 Aug; 19(32):e2300607. PubMed ID: 37086105
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Polarization-sensitive UV photodetector based on ReSe
    Sang Y; Xu M; Huang J; Jian L; Gao W; Sun Y; Zheng Z; Yan Y; Yang M; Li J
    Opt Lett; 2023 Dec; 48(23):6108-6111. PubMed ID: 38039203
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Ag
    Park S; Park T; Park JH; Min JY; Jung Y; Kyoung S; Kang TY; Kim KH; Rim YS; Hong J
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25648-25658. PubMed ID: 35611950
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Strain-Modulated Photoelectric Responses from a Flexible α-In
    Cai W; Wang J; He Y; Liu S; Xiong Q; Liu Z; Zhang Q
    Nanomicro Lett; 2021 Feb; 13(1):74. PubMed ID: 34138284
    [TBL] [Abstract][Full Text] [Related]  

  • 95. High-performance self-powered ultraviolet photodetector based on a ZnO/CuPc inorganic/organic heterojunction.
    Chu L; Xu C; Li Z; Nie C
    RSC Adv; 2024 Apr; 14(19):13361-13366. PubMed ID: 38689826
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Filter-Free UV Photodetectors Based on Unipolar Barrier Van der Waals α-In
    Yan S; Yang J; Cai Y; Wang Y; Li S; Zhan X; Wang F; He J; Wang Z
    Small; 2024 Jun; ():e2401996. PubMed ID: 38829026
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Monolayer Graphene-MoSSe van der Waals Heterostructure for Highly Responsive Gate-Tunable Near-Infrared-Sensitive Broadband Fast Photodetector.
    Masanta S; Nayak C; Agarwal P; Das K; Singha A
    ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36880873
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Self-Powered Ultraviolet Photodetector with Superhigh Photoresponsivity (3.05 A/W) Based on the GaN/Sn:Ga
    Guo D; Su Y; Shi H; Li P; Zhao N; Ye J; Wang S; Liu A; Chen Z; Li C; Tang W
    ACS Nano; 2018 Dec; 12(12):12827-12835. PubMed ID: 30485072
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Self-powered broadband photodetection enabled by facile CVD-grown MoS
    Liang BW; Chang WH; Huang CS; Huang YJ; Chen JH; Li KS; Simbulan KB; Kumar H; Su CY; Kuan CH; Lan YW
    Nanoscale; 2023 Nov; 15(45):18233-18240. PubMed ID: 37943087
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Ultraviolet Wavelength-Dependent Optoelectronic Properties in Two-Dimensional NbSe
    Son SB; Kim Y; Kim A; Cho B; Hong WK
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41537-41545. PubMed ID: 29110451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.