These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37852317)

  • 1. ZnO nanoparticles mediated by Azadirachta indica as nano fertilizer: Improvement in physiological and biochemical indices of Zea mays grown in Cr-contaminated soil.
    Mehmood S; Ou W; Ahmed W; Bundschuh J; Rizwan M; Mahmood M; Sultan H; Alatalo JM; Elnahal ASM; Liu W; Li W
    Environ Pollut; 2023 Dec; 339():122755. PubMed ID: 37852317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of phytostabilized zinc oxide nanoparticles and their effects on physiological and anti-oxidative responses of Zea mays (L.) under chromium stress.
    Ramzan M; Naz G; Shah AA; Parveen M; Jamil M; Gill S; Sharif HMA
    Plant Physiol Biochem; 2023 Mar; 196():130-138. PubMed ID: 36706692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy of Zea mays L. for the management of marble effluent contaminated soil under citric acid amendment; morpho-physiological and biochemical response.
    Farid M; Farid S; Zubair M; Rizwan M; Ishaq HK; Ali S; Ashraf U; Alhaithloul HAS; Gowayed S; Soliman MH
    Chemosphere; 2020 Feb; 240():124930. PubMed ID: 31574440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium accumulation potential of Zea mays grown under four different fertilizers.
    Dheeba B; Sampathkumar P; Kannan K
    Indian J Exp Biol; 2014 Dec; 52(12):1206-10. PubMed ID: 25651615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil.
    Rizwan M; Ali S; Zia Ur Rehman M; Adrees M; Arshad M; Qayyum MF; Ali L; Hussain A; Chatha SAS; Imran M
    Environ Pollut; 2019 May; 248():358-367. PubMed ID: 30818115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants.
    Farid M; Ali S; Rizwan M; Ali Q; Abbas F; Bukhari SAH; Saeed R; Wu L
    Ecotoxicol Environ Saf; 2017 Nov; 145():90-102. PubMed ID: 28710950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the role of different maize (Zea mays L.) cultivars by studying morpho-physiological attributes in chromium-stressed environment.
    Hassan A; Parveen A; Hussain S; Hussain I; Rasheed R
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72886-72897. PubMed ID: 35614358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system.
    Faizan M; Bhat JA; Hessini K; Yu F; Ahmad P
    Ecotoxicol Environ Saf; 2021 Sep; 220():112401. PubMed ID: 34118747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the effects of zinc sulfate nanoparticles and potassium fertilizers on quality of maize and associated health risks in Cd contaminated soils under different moisture regimes.
    Umair M; Zafar SH; Cheema M; Minhas R; Saeed AM; Saqib M; Aslam M
    Sci Total Environ; 2023 Oct; 896():165147. PubMed ID: 37392879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-application of titanium nanoparticles and melatonin effectively lowered chromium toxicity in lemon balm (Melissa officinalis L.) through modifying biochemical characteristics.
    Soliman MH; Alghanem SMS; Alsudays IM; Alaklabi A; Alharbi BM; Al-Amrah H; Azab E; Alnusairi GSH
    Environ Sci Pollut Res Int; 2024 Apr; 31(17):25258-25272. PubMed ID: 38468007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foliar application of silicon-based nanoparticles improve the adaptability of maize (Zea mays L.) in cadmium contaminated soils.
    Ahmed S; Iqbal M; Ahmad Z; Iqbal MA; Artyszak A; Sabagh AEL; Alharby HF; Hossain A
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):41002-41013. PubMed ID: 36626058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate.
    Zhao L; Hernandez-Viezcas JA; Peralta-Videa JR; Bandyopadhyay S; Peng B; Munoz B; Keller AA; Gardea-Torresdey JL
    Environ Sci Process Impacts; 2013 Jan; 15(1):260-6. PubMed ID: 24592443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc oxide nanoparticles mediated biostimulant impact on cadmium detoxification and in silico analysis of zinc oxide-cadmium networks in Zea mays L. regulome.
    Tanveer Y; Jahangir S; Shah ZA; Yasmin H; Nosheen A; Hassan MN; Illyas N; Bajguz A; El-Sheikh MA; Ahmad P
    Environ Pollut; 2023 Jan; 316(Pt 2):120641. PubMed ID: 36372365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined effects of green manure and zinc oxide nanoparticles on cadmium uptake by wheat (Triticum aestivum L.).
    Chen F; Bashir A; Zia Ur Rehman M; Adrees M; Qayyum MF; Ma J; Rizwan M; Ali S
    Chemosphere; 2022 Jul; 298():134348. PubMed ID: 35306054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.
    Wang F; Liu X; Shi Z; Tong R; Adams CA; Shi X
    Chemosphere; 2016 Mar; 147():88-97. PubMed ID: 26761602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc oxide nanoparticles and Klebsiella sp. SBP-8 alleviates chromium toxicity in Brassica juncea by regulation of antioxidant capacity, osmolyte production, nutritional content and reduction in chromium adsorption.
    Shah AA; Zafar S; Usman S; Javad S; Zaib-Un-Nisa ; Aslam M; Noreen Z; Elansary HO; Almutairi KF; Ahmad A
    Plant Physiol Biochem; 2024 May; 210():108624. PubMed ID: 38636254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phyto-management of chromium contaminated soils through sunflower under exogenously applied 5-aminolevulinic acid.
    Farid M; Ali S; Rizwan M; Ali Q; Saeed R; Nasir T; Abbasi GH; Rehmani MIA; Ata-Ul-Karim ST; Bukhari SAH; Ahmad T
    Ecotoxicol Environ Saf; 2018 Apr; 151():255-265. PubMed ID: 29353175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison between the function of Serendipita indica and Sinorhizobium meliloti in modulating the toxicity of zinc oxide nanoparticles in alfalfa (Medicago sativa L.).
    Tabande L; Sepehri M; Yasrebi J; Zarei M; Ghasemi-Fasaei R; Khatabi B
    Environ Sci Pollut Res Int; 2022 Feb; 29(6):8790-8803. PubMed ID: 34490575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of soybean (Glycine max [L.] Merr.) to zinc oxide nanoparticles: Understanding changes in root system architecture, zinc tissue partitioning and soil characteristics.
    Yusefi-Tanha E; Fallah S; Rostamnejadi A; Pokhrel LR
    Sci Total Environ; 2022 Aug; 835():155348. PubMed ID: 35460795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochar Mediated-Alleviation of Chromium Stress and Growth Improvement of Different Maize Cultivars in Tannery Polluted Soils.
    Bashir MA; Wang X; Naveed M; Mustafa A; Ashraf S; Samreen T; Nadeem SM; Jamil M
    Int J Environ Res Public Health; 2021 Apr; 18(9):. PubMed ID: 33922303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.