These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Comparing tonic and phasic calcium in the dendrites of vulnerable midbrain neurons. Chen RY; Evans RC bioRxiv; 2023 Aug; ():. PubMed ID: 37693427 [TBL] [Abstract][Full Text] [Related]
9. A non-cholinergic neuronal loss in the pedunculopontine nucleus of toxin-evoked parkinsonian rats. Pienaar IS; van de Berg W Exp Neurol; 2013 Oct; 248():213-23. PubMed ID: 23769975 [TBL] [Abstract][Full Text] [Related]
10. Temporal-Spatial Profiling of Pedunculopontine Galanin-Cholinergic Neurons in the Lactacystin Rat Model of Parkinson's Disease. Elson JL; Kochaj R; Reynolds R; Pienaar IS Neurotox Res; 2018 Jul; 34(1):16-31. PubMed ID: 29218504 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of L-Type Ca Sun Y; Zhang H; Selvaraj S; Sukumaran P; Lei S; Birnbaumer L; Singh BB J Neurosci; 2017 Mar; 37(12):3364-3377. PubMed ID: 28258168 [TBL] [Abstract][Full Text] [Related]
12. An animal model mimicking pedunculopontine nucleus cholinergic degeneration in Parkinson's disease. Pienaar IS; Harrison IF; Elson JL; Bury A; Woll P; Simon AK; Dexter DT Brain Struct Funct; 2015 Jan; 220(1):479-500. PubMed ID: 24292256 [TBL] [Abstract][Full Text] [Related]
13. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease. Duda J; Pötschke C; Liss B J Neurochem; 2016 Oct; 139 Suppl 1(Suppl Suppl 1):156-178. PubMed ID: 26865375 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial abnormality associates with type-specific neuronal loss and cell morphology changes in the pedunculopontine nucleus in Parkinson disease. Pienaar IS; Elson JL; Racca C; Nelson G; Turnbull DM; Morris CM Am J Pathol; 2013 Dec; 183(6):1826-1840. PubMed ID: 24099985 [TBL] [Abstract][Full Text] [Related]
15. A concerted action of L- and T-type Ca(2+) channels regulates locus coeruleus pacemaking. Matschke LA; Bertoune M; Roeper J; Snutch TP; Oertel WH; Rinné S; Decher N Mol Cell Neurosci; 2015 Sep; 68():293-302. PubMed ID: 26319746 [TBL] [Abstract][Full Text] [Related]
16. Role of pedunculopontine cholinergic neurons in the vulnerability of nigral dopaminergic neurons in Parkinson's disease. Bensaid M; Michel PP; Clark SD; Hirsch EC; François C Exp Neurol; 2016 Jan; 275 Pt 1():209-19. PubMed ID: 26571193 [TBL] [Abstract][Full Text] [Related]
17. Calcium and Parkinson's disease. Surmeier DJ; Schumacker PT; Guzman JD; Ilijic E; Yang B; Zampese E Biochem Biophys Res Commun; 2017 Feb; 483(4):1013-1019. PubMed ID: 27590583 [TBL] [Abstract][Full Text] [Related]
18. Functional segregation of voltage-activated calcium channels in motoneurons of the dorsal motor nucleus of the vagus. Cooper G; Lasser-Katz E; Simchovitz A; Sharon R; Soreq H; Surmeier DJ; Goldberg JA J Neurophysiol; 2015 Sep; 114(3):1513-20. PubMed ID: 26156385 [TBL] [Abstract][Full Text] [Related]
19. Gait improvement by high-frequency stimulation of the subthalamic nucleus in Parkinsonian mice is not associated with changes of the cholinergic system in the pedunculopontine nucleus. Witzig VS; Alosaimi F; Temel Y; Schulz JB; Jahanshahi A; Tan SKH Neurosci Lett; 2023 Apr; 802():137134. PubMed ID: 36801348 [TBL] [Abstract][Full Text] [Related]