These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 37852509)
1. Autotrophic production of polyhydroxyalkanoates using acidogenic-derived H Costa P; Basaglia M; Casella S; Kennes C; Favaro L; Carmen Veiga M Bioresour Technol; 2023 Dec; 390():129880. PubMed ID: 37852509 [TBL] [Abstract][Full Text] [Related]
2. Conversion of fat-containing waste from the margarine manufacturing process into bacterial polyhydroxyalkanoates. Morais C; Freitas F; Cruz MV; Paiva A; Dionísio M; Reis MA Int J Biol Macromol; 2014 Nov; 71():68-73. PubMed ID: 24794198 [TBL] [Abstract][Full Text] [Related]
3. Innovative co-production of polyhydroxyalkanoates and methane from broken rice. Brojanigo S; Alvarado-Morales M; Basaglia M; Casella S; Favaro L; Angelidaki I Sci Total Environ; 2022 Jun; 825():153931. PubMed ID: 35183640 [TBL] [Abstract][Full Text] [Related]
4. Polyhydroxyalkanoate Production from Fruit and Vegetable Waste Processing. Costa P; Basaglia M; Casella S; Favaro L Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559896 [TBL] [Abstract][Full Text] [Related]
5. Application of thermo-separating aqueous two-phase system in extractive bioconversion of polyhydroxyalkanoates by Cupriavidus necator H16. Leong YK; Show PL; Lan JC; Krishnamoorthy R; Chu DT; Nagarajan D; Yen HW; Chang JS Bioresour Technol; 2019 Sep; 287():121474. PubMed ID: 31122870 [TBL] [Abstract][Full Text] [Related]
6. Valorization of CO Nangle SN; Ziesack M; Buckley S; Trivedi D; Loh DM; Nocera DG; Silver PA Metab Eng; 2020 Nov; 62():207-220. PubMed ID: 32961296 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxvalerate) from volatile fatty acids by Cupriavidus necator. Cai F; Lin M; Jin W; Chen C; Liu G J Basic Microbiol; 2023 Feb; 63(2):128-139. PubMed ID: 36192143 [TBL] [Abstract][Full Text] [Related]
8. Engineering Cupriavidus necator DSM 545 for the one-step conversion of starchy waste into polyhydroxyalkanoates. Brojanigo S; Gronchi N; Cazzorla T; Wong TS; Basaglia M; Favaro L; Casella S Bioresour Technol; 2022 Mar; 347():126383. PubMed ID: 34808314 [TBL] [Abstract][Full Text] [Related]
9. Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Volova TG; Kiselev EG; Shishatskaya EI; Zhila NO; Boyandin AN; Syrvacheva DA; Vinogradova ON; Kalacheva GS; Vasiliev AD; Peterson IV Bioresour Technol; 2013 Oct; 146():215-222. PubMed ID: 23934338 [TBL] [Abstract][Full Text] [Related]
10. Microbial production of poly-D-3-hydroxybutyrate from CO2. Ishizaki A; Tanaka K; Taga N Appl Microbiol Biotechnol; 2001 Oct; 57(1-2):6-12. PubMed ID: 11693935 [TBL] [Abstract][Full Text] [Related]
11. Anabolism of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator DSM 545 from spent coffee grounds oil. Ingram HR; Winterburn JB N Biotechnol; 2021 Jan; 60():12-19. PubMed ID: 32846214 [TBL] [Abstract][Full Text] [Related]
12. Adaptation of Cupriavidus necator to conditions favoring polyhydroxyalkanoate production. Cavalheiro JM; de Almeida MC; da Fonseca MM; de Carvalho CC J Biotechnol; 2012 Dec; 164(2):309-17. PubMed ID: 23376842 [TBL] [Abstract][Full Text] [Related]
14. Isopropanol production from carbon dioxide in Cupriavidus necator in a pressurized bioreactor. Garrigues L; Maignien L; Lombard E; Singh J; Guillouet SE N Biotechnol; 2020 May; 56():16-20. PubMed ID: 31731039 [TBL] [Abstract][Full Text] [Related]
15. Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Atlić A; Koller M; Scherzer D; Kutschera C; Grillo-Fernandes E; Horvat P; Chiellini E; Braunegg G Appl Microbiol Biotechnol; 2011 Jul; 91(2):295-304. PubMed ID: 21503760 [TBL] [Abstract][Full Text] [Related]
16. Conversion of Starchy Waste Streams into Polyhydroxyalkanoates Using Brojanigo S; Parro E; Cazzorla T; Favaro L; Basaglia M; Casella S Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32635554 [TBL] [Abstract][Full Text] [Related]
17. Polyhydroxyalkanoate production from sucrose by Cupriavidus necator strains harboring csc genes from Escherichia coli W. Arikawa H; Matsumoto K; Fujiki T Appl Microbiol Biotechnol; 2017 Oct; 101(20):7497-7507. PubMed ID: 28889198 [TBL] [Abstract][Full Text] [Related]
18. Production of polyhydroxyalkanoates (PHAs) by Vu DH; Wainaina S; Taherzadeh MJ; Åkesson D; Ferreira JA Bioengineered; 2021 Dec; 12(1):2480-2498. PubMed ID: 34115556 [TBL] [Abstract][Full Text] [Related]
19. Valorisation of CO2-rich off-gases to biopolymers through biotechnological process. Garcia-Gonzalez L; De Wever H FEMS Microbiol Lett; 2017 Nov; 364(20):. PubMed ID: 28961697 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. García IL; López JA; Dorado MP; Kopsahelis N; Alexandri M; Papanikolaou S; Villar MA; Koutinas AA Bioresour Technol; 2013 Feb; 130():16-22. PubMed ID: 23280181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]