These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 37852977)
1. MacroH2A1.1 as a crossroad between epigenetics, inflammation and metabolism of mesenchymal stromal cells in myelodysplastic syndromes. Giallongo C; Dulcamare I; Giallongo S; Duminuco A; Pieragostino D; Cufaro MC; Amorini AM; Lazzarino G; Romano A; Parrinello N; Di Rosa M; Broggi G; Caltabiano R; Caraglia M; Scrima M; Pasquale LS; Tathode MS; Li Volti G; Motterlini R; Di Raimondo F; Tibullo D; Palumbo GA Cell Death Dis; 2023 Oct; 14(10):686. PubMed ID: 37852977 [TBL] [Abstract][Full Text] [Related]
2. Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display in vitro reduced proliferative potential and similar capacity to support leukemia cell survival. Corradi G; Baldazzi C; Očadlíková D; Marconi G; Parisi S; Testoni N; Finelli C; Cavo M; Curti A; Ciciarello M Stem Cell Res Ther; 2018 Oct; 9(1):271. PubMed ID: 30359303 [TBL] [Abstract][Full Text] [Related]
3. Cellular senescence induced by S100A9 in mesenchymal stromal cells through NLRP3 inflammasome activation. Shi L; Zhao Y; Fei C; Guo J; Jia Y; Wu D; Wu L; Chang C Aging (Albany NY); 2019 Nov; 11(21):9626-9642. PubMed ID: 31727865 [TBL] [Abstract][Full Text] [Related]
4. Aging- and Senescence-associated Changes of Mesenchymal Stromal Cells in Myelodysplastic Syndromes. Mattiucci D; Maurizi G; Leoni P; Poloni A Cell Transplant; 2018 May; 27(5):754-764. PubMed ID: 29682980 [TBL] [Abstract][Full Text] [Related]
5. Mesenchymal stromal cells shape the MDS microenvironment by inducing suppressive monocytes that dampen NK cell function. Sarhan D; Wang J; Sunil Arvindam U; Hallstrom C; Verneris MR; Grzywacz B; Warlick E; Blazar BR; Miller JS JCI Insight; 2020 Mar; 5(5):. PubMed ID: 32045384 [TBL] [Abstract][Full Text] [Related]
6. Serine protease inhibitor kunitz-type 2 is downregulated in myelodysplastic syndromes and modulates cell-cell adhesion. Roversi FM; Lopes MR; Machado-Neto JA; Longhini AL; Duarte Ada S; Baratti MO; Palodetto B; Corrocher FA; Pericole FV; Campos Pde M; Favaro P; Traina F; Saad ST Stem Cells Dev; 2014 May; 23(10):1109-20. PubMed ID: 24410667 [TBL] [Abstract][Full Text] [Related]
7. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Geyh S; Oz S; Cadeddu RP; Fröbel J; Brückner B; Kündgen A; Fenk R; Bruns I; Zilkens C; Hermsen D; Gattermann N; Kobbe G; Germing U; Lyko F; Haas R; Schroeder T Leukemia; 2013 Sep; 27(9):1841-51. PubMed ID: 23797473 [TBL] [Abstract][Full Text] [Related]
8. Luspatercept restores SDF-1-mediated hematopoietic support by MDS-derived mesenchymal stromal cells. Wobus M; Mies A; Asokan N; Oelschlägel U; Möbus K; Winter S; Cross M; Weidner H; Rauner M; Hofbauer LC; Bornhäuser M; Platzbecker U Leukemia; 2021 Oct; 35(10):2936-2947. PubMed ID: 34002031 [TBL] [Abstract][Full Text] [Related]
9. Deficiency and haploinsufficiency of histone macroH2A1.1 in mice recapitulate hematopoietic defects of human myelodysplastic syndrome. Bereshchenko O; Lo Re O; Nikulenkov F; Flamini S; Kotaskova J; Mazza T; Le Pannérer MM; Buschbeck M; Giallongo C; Palumbo G; Li Volti G; Pazienza V; Cervinek L; Riccardi C; Krejci L; Pospisilova S; Stewart AF; Vinciguerra M Clin Epigenetics; 2019 Aug; 11(1):121. PubMed ID: 31439048 [TBL] [Abstract][Full Text] [Related]
11. Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy. Poon Z; Dighe N; Venkatesan SS; Cheung AMS; Fan X; Bari S; Hota M; Ghosh S; Hwang WYK Leukemia; 2019 Jun; 33(6):1487-1500. PubMed ID: 30575819 [TBL] [Abstract][Full Text] [Related]
12. Inappropriate Notch activity and limited mesenchymal stem cell plasticity in the bone marrow of patients with myelodysplastic syndromes. Varga G; Kiss J; Várkonyi J; Vas V; Farkas P; Pálóczi K; Uher F Pathol Oncol Res; 2007; 13(4):311-9. PubMed ID: 18158566 [TBL] [Abstract][Full Text] [Related]
13. In vitro study of biological characteristics of mesenchymal stem cells in patients with low-risk myelodysplastic syndrome. Zhang YZ; Zhao DD; Han XP; Jin HJ; Da WM; Yu L Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2008 Aug; 16(4):813-8. PubMed ID: 18718067 [TBL] [Abstract][Full Text] [Related]
15. Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. Flores-Figueroa E; Varma S; Montgomery K; Greenberg PL; Gratzinger D Lab Invest; 2012 Sep; 92(9):1330-41. PubMed ID: 22710983 [TBL] [Abstract][Full Text] [Related]
16. [Senescent Mesenchymal Stem Cells Contribute to Progression of Myelodysplastic Syndromes-Review]. Pang YB; Li WW; Luo JM; Ji J; DU X Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2018 Jun; 26(3):942-946. PubMed ID: 29950248 [TBL] [Abstract][Full Text] [Related]
17. The immunological role of mesenchymal stromal cells in patients with myelodysplastic syndrome. Zheng L; Zhang L; Guo Y; Xu X; Liu Z; Yan Z; Fu R Front Immunol; 2022; 13():1078421. PubMed ID: 36569863 [TBL] [Abstract][Full Text] [Related]
18. Effects of rigosertib on the osteo-hematopoietic niche in myelodysplastic syndromes. Balaian E; Weidner H; Wobus M; Baschant U; Jacobi A; Mies A; Bornhäuser M; Guck J; Hofbauer LC; Rauner M; Platzbecker U Ann Hematol; 2019 Sep; 98(9):2063-2072. PubMed ID: 31312928 [TBL] [Abstract][Full Text] [Related]
19. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Medyouf H; Mossner M; Jann JC; Nolte F; Raffel S; Herrmann C; Lier A; Eisen C; Nowak V; Zens B; Müdder K; Klein C; Obländer J; Fey S; Vogler J; Fabarius A; Riedl E; Roehl H; Kohlmann A; Staller M; Haferlach C; Müller N; John T; Platzbecker U; Metzgeroth G; Hofmann WK; Trumpp A; Nowak D Cell Stem Cell; 2014 Jun; 14(6):824-37. PubMed ID: 24704494 [TBL] [Abstract][Full Text] [Related]