BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37853017)

  • 1. Paired yeast one-hybrid assays to detect DNA-binding cooperativity and antagonism across transcription factors.
    Berenson A; Lane R; Soto-Ugaldi LF; Patel M; Ciausu C; Li Z; Chen Y; Shah S; Santoso C; Liu X; Spirohn K; Hao T; Hill DE; Vidal M; Fuxman Bass JI
    Nat Commun; 2023 Oct; 14(1):6570. PubMed ID: 37853017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights.
    Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML
    Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying cooperativity among transcription factors controlling the cell cycle in yeast.
    Banerjee N; Zhang MQ
    Nucleic Acids Res; 2003 Dec; 31(23):7024-31. PubMed ID: 14627835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast.
    Wu WS; Lai FJ
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S10. PubMed ID: 26679776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Options and Considerations When Using a Yeast One-Hybrid System.
    Sewell JA; Fuxman Bass JI
    Methods Mol Biol; 2018; 1794():119-130. PubMed ID: 29855954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution DNA-binding specificity analysis of yeast transcription factors.
    Zhu C; Byers KJ; McCord RP; Shi Z; Berger MF; Newburger DE; Saulrieta K; Smith Z; Shah MV; Radhakrishnan M; Philippakis AA; Hu Y; De Masi F; Pacek M; Rolfs A; Murthy T; Labaer J; Bulyk ML
    Genome Res; 2009 Apr; 19(4):556-66. PubMed ID: 19158363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insights into transcription factor cooperativity and its impact on protein-phenotype interactions.
    Ibarra IL; Hollmann NM; Klaus B; Augsten S; Velten B; Hennig J; Zaugg JB
    Nat Commun; 2020 Jan; 11(1):124. PubMed ID: 31913281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene-Centered Yeast One-Hybrid Assays.
    Fuxman Bass JI; Reece-Hoyes JS; Walhout AJ
    Cold Spring Harb Protoc; 2016 Dec; 2016(12):pdb.top077669. PubMed ID: 27934693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comprehensive Drosophila melanogaster Transcription Factor Interactome.
    Shokri L; Inukai S; Hafner A; Weinand K; Hens K; Vedenko A; Gisselbrecht SS; Dainese R; Bischof J; Furger E; Feuz JD; Basler K; Deplancke B; Bulyk ML
    Cell Rep; 2019 Apr; 27(3):955-970.e7. PubMed ID: 30995488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans.
    Tahara S; Tsuchiya T; Matsumoto H; Ozaki H
    BMC Genomics; 2023 Oct; 24(1):597. PubMed ID: 37805453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene-centered yeast one-hybrid assays.
    Reece-Hoyes JS; Walhout AJ
    Methods Mol Biol; 2012; 812():189-208. PubMed ID: 22218861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping functional transcription factor networks from gene expression data.
    Haynes BC; Maier EJ; Kramer MH; Wang PI; Brown H; Brent MR
    Genome Res; 2013 Aug; 23(8):1319-28. PubMed ID: 23636944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression.
    Boorsma A; Lu XJ; Zakrzewska A; Klis FM; Bussemaker HJ
    PLoS One; 2008 Sep; 3(9):e3112. PubMed ID: 18769540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Yeast One-Hybrid Assays to Study Protein-DNA Interactions.
    Berenson A; Fuxman Bass JI
    Methods Mol Biol; 2023; 2599():11-20. PubMed ID: 36427139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide analysis of transcription factor binding sites and their characteristic DNA structures.
    Dai Z; Guo D; Dai X; Xiong Y
    BMC Genomics; 2015; 16 Suppl 3(Suppl 3):S8. PubMed ID: 25708259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A conserved role for transcription factor sumoylation in binding-site selection.
    Rosonina E
    Curr Genet; 2019 Dec; 65(6):1307-1312. PubMed ID: 31093693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-throughput gateway-compatible yeast one-hybrid screen to detect protein-DNA interactions.
    Hens K; Feuz JD; Deplancke B
    Methods Mol Biol; 2012; 786():335-55. PubMed ID: 21938636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic Investigation of Transcription Factor Activity in the Context of Chromatin Using Massively Parallel Binding and Expression Assays.
    Levo M; Avnit-Sagi T; Lotan-Pompan M; Kalma Y; Weinberger A; Yakhini Z; Segal E
    Mol Cell; 2017 Feb; 65(4):604-617.e6. PubMed ID: 28212748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.