BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37853017)

  • 21. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of transcription factor cooperativity via stochastic system model.
    Chang YH; Wang YC; Chen BS
    Bioinformatics; 2006 Sep; 22(18):2276-82. PubMed ID: 16844711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinguishing direct versus indirect transcription factor-DNA interactions.
    Gordân R; Hartemink AJ; Bulyk ML
    Genome Res; 2009 Nov; 19(11):2090-100. PubMed ID: 19652015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A computational "genome walk" technique to identify regulatory interactions in gene networks.
    Wagner A
    Pac Symp Biocomput; 1998; ():264-78. PubMed ID: 9697188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Simple Method to Detect the Inhibition of Transcription Factor-DNA Binding Due to Protein-Protein Interactions In Vivo.
    Yang G; Chao D; Ming Z; Xia J
    Genes (Basel); 2019 Sep; 10(9):. PubMed ID: 31500097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcription Factor-DNA Binding Motifs in Saccharomyces cerevisiae: Tools and Resources.
    Schipper JL; Gordân RM
    Cold Spring Harb Protoc; 2016 Nov; 2016(11):. PubMed ID: 27803259
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA binding specificity of all four Saccharomyces cerevisiae forkhead transcription factors.
    Cooper BH; Dantas Machado AC; Gan Y; Aparicio OM; Rohs R
    Nucleic Acids Res; 2023 Jun; 51(11):5621-5633. PubMed ID: 37177995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleosome-mediated cooperativity between transcription factors.
    Mirny LA
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22534-9. PubMed ID: 21149679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleosomal context of binding sites influences transcription factor binding affinity and gene regulation.
    Dai Z; Dai X; Xiang Q; Feng J
    Genomics Proteomics Bioinformatics; 2009 Dec; 7(4):155-62. PubMed ID: 20172488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling the evolution of transcription factor binding preferences in complex eukaryotes.
    Rosanova A; Colliva A; Osella M; Caselle M
    Sci Rep; 2017 Aug; 7(1):7596. PubMed ID: 28790414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitotic chromosome binding predicts transcription factor properties in interphase.
    Raccaud M; Friman ET; Alber AB; Agarwal H; Deluz C; Kuhn T; Gebhardt JCM; Suter DM
    Nat Commun; 2019 Jan; 10(1):487. PubMed ID: 30700703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discovering human transcription factor physical interactions with genetic variants, novel DNA motifs, and repetitive elements using enhanced yeast one-hybrid assays.
    Shrestha S; Sewell JA; Santoso CS; Forchielli E; Carrasco Pro S; Martinez M; Fuxman Bass JI
    Genome Res; 2019 Sep; 29(9):1533-1544. PubMed ID: 31481462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcription factor exchange enables prolonged transcriptional bursts.
    Pomp W; Meeussen JVW; Lenstra TL
    Mol Cell; 2024 Mar; 84(6):1036-1048.e9. PubMed ID: 38377994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Absence of a simple code: how transcription factors read the genome.
    Slattery M; Zhou T; Yang L; Dantas Machado AC; Gordân R; Rohs R
    Trends Biochem Sci; 2014 Sep; 39(9):381-99. PubMed ID: 25129887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. De novo motif discovery facilitates identification of interactions between transcription factors in Saccharomyces cerevisiae.
    Chen MJ; Chou LC; Hsieh TT; Lee DD; Liu KW; Yu CY; Oyang YJ; Tsai HK; Chen CY
    Bioinformatics; 2012 Mar; 28(5):701-8. PubMed ID: 22238267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of transcription factor binding through sequence variations and turnover of binding sites.
    Krieger G; Lupo O; Wittkopp P; Barkai N
    Genome Res; 2022 Jun; 32(6):1099-1111. PubMed ID: 35618416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disrupted cooperation between transcription factors across diverse cancer types.
    Wang J; Liu Q; Sun J; Shyr Y
    BMC Genomics; 2016 Aug; 17():560. PubMed ID: 27496222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleosome free regions in yeast promoters result from competitive binding of transcription factors that interact with chromatin modifiers.
    Ozonov EA; van Nimwegen E
    PLoS Comput Biol; 2013; 9(8):e1003181. PubMed ID: 23990766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genes regulated cooperatively by one or more transcription factors and their identification in whole eukaryotic genomes.
    Wagner A
    Bioinformatics; 1999 Oct; 15(10):776-84. PubMed ID: 10705431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.