These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37853017)

  • 41. Development of a novel oligonucleotide array-based transcription factor assay platform for genome-wide active transcription factor profiling in Saccharomyces cerevisiae.
    Zhao Y; Shao W; Wei H; Qiao J; Lu Y; Sun Y; Mitchelson K; Cheng J; Zhou Y
    J Proteome Res; 2008 Mar; 7(3):1315-25. PubMed ID: 18220337
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detecting Cooperativity between Transcription Factors Based on Functional Coherence and Similarity of Their Target Gene Sets.
    Wu WS; Lai FJ
    PLoS One; 2016; 11(9):e0162931. PubMed ID: 27623007
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Construction of Arabidopsis Transcription Factor ORFeome Collections and Identification of Protein-DNA Interactions by High-Throughput Yeast One-Hybrid Screens.
    Kang SE; Breton G; Pruneda-Paz JL
    Methods Mol Biol; 2018; 1794():151-182. PubMed ID: 29855956
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nonspecific transcription-factor-DNA binding influences nucleosome occupancy in yeast.
    Afek A; Sela I; Musa-Lempel N; Lukatsky DB
    Biophys J; 2011 Nov; 101(10):2465-75. PubMed ID: 22098745
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unraveling determinants of transcription factor binding outside the core binding site.
    Levo M; Zalckvar E; Sharon E; Dantas Machado AC; Kalma Y; Lotam-Pompan M; Weinberger A; Yakhini Z; Rohs R; Segal E
    Genome Res; 2015 Jul; 25(7):1018-29. PubMed ID: 25762553
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A nucleosome-guided map of transcription factor binding sites in yeast.
    Narlikar L; Gordân R; Hartemink AJ
    PLoS Comput Biol; 2007 Nov; 3(11):e215. PubMed ID: 17997593
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of mammalian transcription factors that bind to inaccessible chromatin.
    Pop RT; Pisante A; Nagy D; Martin PCN; Mikheeva LA; Hayat A; Ficz G; Zabet NR
    Nucleic Acids Res; 2023 Sep; 51(16):8480-8495. PubMed ID: 37486787
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of transcription factor targets by phenotypic activation and microarray expression profiling in yeast.
    Chua G
    Methods Mol Biol; 2009; 548():19-35. PubMed ID: 19521817
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reciprocal regulation of the Epstein-Barr virus BamHI-F promoter by EBNA-1 and an E2F transcription factor.
    Sung NS; Wilson J; Davenport M; Sista ND; Pagano JS
    Mol Cell Biol; 1994 Nov; 14(11):7144-52. PubMed ID: 7935429
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transcription factor binding process is the primary driver of noise in gene expression.
    Parab L; Pal S; Dhar R
    PLoS Genet; 2022 Dec; 18(12):e1010535. PubMed ID: 36508455
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational identification of combinatorial regulation and transcription factor binding sites.
    Ryu T; Kim Y; Kim DW; Lee D
    Biotechnol Bioeng; 2007 Aug; 97(6):1594-602. PubMed ID: 17252601
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data.
    Wang Y; Zhang XS; Xia Y
    Nucleic Acids Res; 2009 Oct; 37(18):5943-58. PubMed ID: 19661283
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computational identification of transcription factor binding sites via a transcription-factor-centric clustering (TFCC) algorithm.
    Zhu Z; Pilpel Y; Church GM
    J Mol Biol; 2002 Apr; 318(1):71-81. PubMed ID: 12054769
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surprising connections between DNA binding and function for the near-complete set of yeast transcription factors.
    Mahendrawada L; Warfield L; Donczew R; Hahn S
    bioRxiv; 2023 Aug; ():. PubMed ID: 37546716
    [TBL] [Abstract][Full Text] [Related]  

  • 56. YPA: an integrated repository of promoter features in Saccharomyces cerevisiae.
    Chang DT; Huang CY; Wu CY; Wu WS
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D647-52. PubMed ID: 21045055
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DNA-dependent formation of transcription factor pairs alters their binding specificity.
    Jolma A; Yin Y; Nitta KR; Dave K; Popov A; Taipale M; Enge M; Kivioja T; Morgunova E; Taipale J
    Nature; 2015 Nov; 527(7578):384-8. PubMed ID: 26550823
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sumoylation of DNA-bound transcription factor Sko1 prevents its association with nontarget promoters.
    Sri Theivakadadcham VS; Bergey BG; Rosonina E
    PLoS Genet; 2019 Feb; 15(2):e1007991. PubMed ID: 30763307
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DNA sequence correlations shape nonspecific transcription factor-DNA binding affinity.
    Sela I; Lukatsky DB
    Biophys J; 2011 Jul; 101(1):160-6. PubMed ID: 21723826
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantitative analysis of transcription factor binding and expression using calling cards reporter arrays.
    Liu J; Shively CA; Mitra RD
    Nucleic Acids Res; 2020 May; 48(9):e50. PubMed ID: 32133534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.