These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 37853123)

  • 1. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb.
    Ma S; Chen M; Jiang Y; Xiang X; Wang S; Wu Z; Li S; Cui Y; Wang J; Zhu Y; Zhang Y; Ma H; Duan S; Li H; Yang Y; Lingle CJ; Hu H
    Nature; 2023 Oct; 622(7984):802-809. PubMed ID: 37853123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression.
    Yang Y; Cui Y; Sang K; Dong Y; Ni Z; Ma S; Hu H
    Nature; 2018 Feb; 554(7692):317-322. PubMed ID: 29446381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of ketamine action as an antidepressant.
    Zanos P; Gould TD
    Mol Psychiatry; 2018 Apr; 23(4):801-811. PubMed ID: 29532791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral Habenular Burst Firing as a Target of the Rapid Antidepressant Effects of Ketamine.
    Cui Y; Hu S; Hu H
    Trends Neurosci; 2019 Mar; 42(3):179-191. PubMed ID: 30823984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical and synaptic properties of NMDA receptors in the lateral habenula.
    Nuno-Perez A; Mondoloni S; Tchenio A; Lecca S; Mameli M
    Neuropharmacology; 2021 Sep; 196():108718. PubMed ID: 34273390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antidepressant-relevant concentrations of the ketamine metabolite (2
    Lumsden EW; Troppoli TA; Myers SJ; Zanos P; Aracava Y; Kehr J; Lovett J; Kim S; Wang FH; Schmidt S; Jenne CE; Yuan P; Morris PJ; Thomas CJ; Zarate CA; Moaddel R; Traynelis SF; Pereira EFR; Thompson SM; Albuquerque EX; Gould TD
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):5160-5169. PubMed ID: 30796190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute Amino Acid d-Serine Administration, Similar to Ketamine, Produces Antidepressant-like Effects through Identical Mechanisms.
    Wei IH; Chen KT; Tsai MH; Wu CH; Lane HY; Huang CC
    J Agric Food Chem; 2017 Dec; 65(49):10792-10803. PubMed ID: 29161812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overcoming Depression by Inhibition of Neural Burst Firing.
    Kim D; Cheong E; Shin HS
    Neuron; 2018 Jun; 98(5):878-879. PubMed ID: 29879390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-dose infusion ketamine and non-ketamine N-methyl-d-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories.
    Kishimoto T; Chawla JM; Hagi K; Zarate CA; Kane JM; Bauer M; Correll CU
    Psychol Med; 2016 May; 46(7):1459-72. PubMed ID: 26867988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Sustained Antidepressant Effects of Ketamine Are Independent of the Lateral Habenula.
    Zhou X; Zhang C; Miao J; Chen Z; Dong H; Liu C
    J Neurosci; 2021 May; 41(18):4131-4140. PubMed ID: 33664132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses.
    Gideons ES; Kavalali ET; Monteggia LM
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8649-54. PubMed ID: 24912158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMDA Receptor Activation-Dependent Antidepressant-Relevant Behavioral and Synaptic Actions of Ketamine.
    Zanos P; Brown KA; Georgiou P; Yuan P; Zarate CA; Thompson SM; Gould TD
    J Neurosci; 2023 Feb; 43(6):1038-1050. PubMed ID: 36596696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mice lacking NMDA receptors in parvalbumin neurons display normal depression-related behavior and response to antidepressant action of NMDAR antagonists.
    Pozzi L; Pollak Dorocic I; Wang X; Carlén M; Meletis K
    PLoS One; 2014; 9(1):e83879. PubMed ID: 24454710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMDAR inhibition-independent antidepressant actions of ketamine metabolites.
    Zanos P; Moaddel R; Morris PJ; Georgiou P; Fischell J; Elmer GI; Alkondon M; Yuan P; Pribut HJ; Singh NS; Dossou KS; Fang Y; Huang XP; Mayo CL; Wainer IW; Albuquerque EX; Thompson SM; Thomas CJ; Zarate CA; Gould TD
    Nature; 2016 May; 533(7604):481-6. PubMed ID: 27144355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The
    Jiang Y; Dong Y; Hu H
    Philos Trans R Soc Lond B Biol Sci; 2024 Jul; 379(1906):20230225. PubMed ID: 38853549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of NMDA receptor GluN2D subunit in the antidepressant effects of enantiomers of ketamine.
    Ide S; Ikekubo Y; Mishina M; Hashimoto K; Ikeda K
    J Pharmacol Sci; 2017 Nov; 135(3):138-140. PubMed ID: 29174627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of NMDARs in the anesthetic and antidepressant effects of ketamine.
    Zhou L; Duan J
    CNS Neurosci Ther; 2024 Apr; 30(4):e14464. PubMed ID: 37680076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of ketamine and its metabolites as antidepressants.
    Hess EM; Riggs LM; Michaelides M; Gould TD
    Biochem Pharmacol; 2022 Mar; 197():114892. PubMed ID: 34968492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does increasing the ratio of AMPA-to-NMDA receptor mediated neurotransmission engender antidepressant action? Studies in the mouse forced swim and tail suspension tests.
    Andreasen JT; Gynther M; Rygaard A; Bøgelund T; Nielsen SD; Clausen RP; Mogensen J; Pickering DS
    Neurosci Lett; 2013 Jun; 546():6-10. PubMed ID: 23643996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opioid system is necessary but not sufficient for antidepressive actions of ketamine in rodents.
    Klein ME; Chandra J; Sheriff S; Malinow R
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2656-2662. PubMed ID: 31941713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.