These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37853128)

  • 1. Sublithospheric diamond ages and the supercontinent cycle.
    Timmerman S; Stachel T; Koornneef JM; Smit KV; Harlou R; Nowell GM; Thomson AR; Kohn SC; Davies JHFL; Davies GR; Krebs MY; Zhang Q; Milne SEM; Harris JW; Kaminsky F; Zedgenizov D; Bulanova G; Smith CB; Cabral Neto I; Silveira FV; Burnham AD; Nestola F; Shirey SB; Walter MJ; Steele A; Pearson DG
    Nature; 2023 Nov; 623(7988):752-756. PubMed ID: 37853128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lithospheric-to-lower-mantle carbon cycle recorded in superdeep diamonds.
    Regier ME; Pearson DG; Stachel T; Luth RW; Stern RA; Harris JW
    Nature; 2020 Sep; 585(7824):234-238. PubMed ID: 32908266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds.
    Weiss Y; McNeill J; Pearson DG; Nowell GM; Ottley CJ
    Nature; 2015 Aug; 524(7565):339-42. PubMed ID: 26289205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cubic Fe-bearing majorite synthesized at 18-25 GPa and 1000 °C: implications for element transport, subducted slab rheology and diamond formation.
    Stagno V; Bindi L; Bonechi B; Greaux S; Aulbach S; Irifune T; Lupi S; Marras G; McCammon CA; Nazzari M; Piccirilli F; Poe B; Romano C; Scarlato P
    Sci Rep; 2023 Sep; 13(1):15855. PubMed ID: 37740075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building cratonic keels in Precambrian plate tectonics.
    Perchuk AL; Gerya TV; Zakharov VS; Griffin WL
    Nature; 2020 Oct; 586(7829):395-401. PubMed ID: 33057224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfur isotopes in diamonds reveal differences in continent construction.
    Smit KV; Shirey SB; Hauri EH; Stern RA
    Science; 2019 Apr; 364(6438):383-385. PubMed ID: 31023922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary carbonatite melt from deeply subducted oceanic crust.
    Walter MJ; Bulanova GP; Armstrong LS; Keshav S; Blundy JD; Gudfinnsson G; Lord OT; Lennie AR; Clark SM; Smith CB; Gobbo L
    Nature; 2008 Jul; 454(7204):622-5. PubMed ID: 18668105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subduction-related oxidation of the sublithospheric mantle evidenced by ferropericlase and magnesiowüstite diamond inclusions.
    Kiseeva ES; Korolev N; Koemets I; Zedgenizov DA; Unitt R; McCammon C; Aslandukova A; Khandarkhaeva S; Fedotenko T; Glazyrin K; Bessas D; Aprilis G; Chumakov AI; Kagi H; Dubrovinsky L
    Nat Commun; 2022 Dec; 13(1):7517. PubMed ID: 36473837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions.
    Walter MJ; Kohn SC; Araujo D; Bulanova GP; Smith CB; Gaillou E; Wang J; Steele A; Shirey SB
    Science; 2011 Oct; 334(6052):54-7. PubMed ID: 21921159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First finding of continental deep subduction in the Sesia Zone of the Western Alps and implications for subduction dynamics.
    Chen YX; Zhou K; He Q; Zheng YF; Schertl HP; Chen K
    Natl Sci Rev; 2023 May; 10(5):nwad023. PubMed ID: 37056434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy iron in large gem diamonds traces deep subduction of serpentinized ocean floor.
    Smith EM; Ni P; Shirey SB; Richardson SH; Wang W; Shahar A
    Sci Adv; 2021 Mar; 7(14):. PubMed ID: 33789901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Key new pieces of the HIMU puzzle from olivines and diamond inclusions.
    Weiss Y; Class C; Goldstein SL; Hanyu T
    Nature; 2016 Sep; 537(7622):666-670. PubMed ID: 27595333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osmium isotopes and mantle convection.
    Hauri EH
    Philos Trans A Math Phys Eng Sci; 2002 Nov; 360(1800):2371-82. PubMed ID: 12460472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blue boron-bearing diamonds from Earth's lower mantle.
    Smith EM; Shirey SB; Richardson SH; Nestola F; Bullock ES; Wang J; Wang W
    Nature; 2018 Aug; 560(7716):84-87. PubMed ID: 30068951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slab melting as a barrier to deep carbon subduction.
    Thomson AR; Walter MJ; Kohn SC; Brooker RA
    Nature; 2016 Jan; 529(7584):76-9. PubMed ID: 26738593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc.
    Timm C; Bassett D; Graham IJ; Leybourne MI; de Ronde CE; Woodhead J; Layton-Matthews D; Watts AB
    Nat Commun; 2013; 4():1720. PubMed ID: 23591887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction.
    Zhao ZF; Dai LQ; Zheng YF
    Sci Rep; 2013 Dec; 3():3413. PubMed ID: 24301173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diamond genesis, seismic structure, and evolution of the Kaapvaal-Zimbabwe craton.
    Shirey SB; Harris JW; Richardson SH; Fouch MJ; James DE; Cartigny P; Deines P; Viljoen F
    Science; 2002 Sep; 297(5587):1683-6. PubMed ID: 12215642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of diamond in the Earth's mantle.
    Stachel T; Harris JW
    J Phys Condens Matter; 2009 Sep; 21(36):364206. PubMed ID: 21832312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atmospheric sulfur is recycled to the crystalline continental crust during supercontinent formation.
    LaFlamme C; Fiorentini ML; Lindsay MD; Bui TH
    Nat Commun; 2018 Oct; 9(1):4380. PubMed ID: 30348984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.