These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 37853603)

  • 1. High-Energy Aqueous/Organic Hybrid Batteries Enabled by Cu
    Bi S; Zhang Y; Wang H; Tian J; Niu Z
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312172. PubMed ID: 37853603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A High-Energy Aqueous All-Sulfur Battery.
    Wang H; Bi S; Zhang Y; Tian J; Niu Z
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202317825. PubMed ID: 38238258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Six-Electron-Redox Iodine Electrodes for High-Energy Aqueous Batteries.
    Bi S; Wang H; Zhang Y; Yang M; Li Q; Tian J; Niu Z
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312982. PubMed ID: 37861096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes.
    Chen WJ; Li BQ; Zhao CX; Zhao M; Yuan TQ; Sun RC; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):10732-10745. PubMed ID: 31746521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bimetallic Coupling Strategy Modulating Electronic Construction to Accelerate Sulfur Redox Reaction Kinetics for High-Energy Flexible Li-S Batteries.
    Dong H; Ji Y; Wang L; Wang H; Yang C; Xiao Y; Chen M; Wang Y; Chou S; Wang R; Chen S
    Small; 2024 Dec; 20(49):e2406565. PubMed ID: 39268806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Energy Aqueous S-MnO
    Yang J; Bi S; Wang H; Zhang Y; Yan H; Niu Z
    Angew Chem Int Ed Engl; 2024 Oct; 63(44):e202409071. PubMed ID: 39136345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium-Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities.
    Zhao M; Li BQ; Peng HJ; Yuan H; Wei JY; Huang JQ
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):12636-12652. PubMed ID: 31490599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries.
    Li G; Huang Q; He X; Gao Y; Wang D; Kim SH; Wang D
    ACS Nano; 2018 Feb; 12(2):1500-1507. PubMed ID: 29376330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Energy Density Rechargeable Batteries Based on Li Metal Anodes. The Role of Unique Surface Chemistry Developed in Solutions Containing Fluorinated Organic Co-solvents.
    Aurbach D; Markevich E; Salitra G
    J Am Chem Soc; 2021 Dec; 143(50):21161-21176. PubMed ID: 34807588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promoting the Transformation of Li
    Yang X; Gao X; Sun Q; Jand SP; Yu Y; Zhao Y; Li X; Adair K; Kuo LY; Rohrer J; Liang J; Lin X; Banis MN; Hu Y; Zhang H; Li X; Li R; Zhang H; Kaghazchi P; Sham TK; Sun X
    Adv Mater; 2019 Jun; 31(25):e1901220. PubMed ID: 31062911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nontraditional Approaches To Enable High-Energy and Long-Life Lithium-Sulfur Batteries.
    Zhao C; Amine K; Xu GL
    Acc Chem Res; 2023 Oct; 56(19):2700-2712. PubMed ID: 37728762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium-Sulfur Batteries with Encapsulating Lithium Polysulfide Electrolyte.
    Liu Y; Zhao M; Hou LP; Li Z; Bi CX; Chen ZX; Cheng Q; Zhang XQ; Li BQ; Kaskel S; Huang JQ
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202303363. PubMed ID: 37249483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Li
    Jiang J; Fan Q; Chou S; Guo Z; Konstantinov K; Liu H; Wang J
    Small; 2021 Mar; 17(9):e1903934. PubMed ID: 31657137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries.
    Zhu Y; Fan X; Suo L; Luo C; Gao T; Wang C
    ACS Nano; 2016 Jan; 10(1):1529-38. PubMed ID: 26700975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Routes to Electrochemically Stable Sulfur Cathodes for Practical Li-S Batteries.
    Li H; Yang H; Ai X
    Adv Mater; 2023 Oct; ():e2305038. PubMed ID: 37867204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the Atomic-Level Manipulation Mechanism of Li
    Shan J; Wang W; Zhang B; Wang X; Zhou W; Yue L; Li Y
    Adv Sci (Weinh); 2022 Nov; 9(33):e2204192. PubMed ID: 36202626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Capacity Li
    Fujita Y; Sakuda A; Hasegawa Y; Deguchi M; Motohashi K; Jiong D; Tsukasaki H; Mori S; Tatsumisago M; Hayashi A
    Small; 2023 Sep; 19(36):e2302179. PubMed ID: 37127858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.