These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37853644)

  • 21. Guided bone regeneration using beta-tricalcium phosphate with and without fibronectin-An experimental study in rats.
    Escoda-Francolí J; Sánchez-Garcés MÁ; Gimeno-Sandig Á; Muñoz-Guzón F; Barbany-Cairó JR; Badiella-Busquets L; Gay-Escoda C
    Clin Oral Implants Res; 2018 Oct; 29(10):1038-1049. PubMed ID: 30267433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological response to β-tricalcium phosphate/calcium sulfate synthetic graft material: an experimental study.
    Leventis MD; Fairbairn P; Dontas I; Faratzis G; Valavanis KD; Khaldi L; Kostakis G; Eleftheriadis E
    Implant Dent; 2014 Feb; 23(1):37-43. PubMed ID: 24384743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 in a beta-tricalcium phosphate carrier into one-wall intrabony defects in dogs.
    Lee JS; Wikesjö UM; Jung UW; Choi SH; Pippig S; Siedler M; Kim CK
    J Clin Periodontol; 2010 Apr; 37(4):382-9. PubMed ID: 20447262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combination with allogenic bone reduces early absorption of beta-tricalcium phosphate (beta-TCP) and enhances the role as a bone regeneration scaffold. Experimental animal study in rat mandibular bone defects.
    Hirota M; Matsui Y; Mizuki N; Kishi T; Watanuki K; Ozawa T; Fukui T; Shoji S; Adachi M; Monden Y; Iwai T; Tohnai I
    Dent Mater J; 2009 Mar; 28(2):153-61. PubMed ID: 19496394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Histological evaluation of maxillary sinus floor augmentation with recombinant human growth and differentiation factor-5-coated β-tricalcium phosphate: results of a multicenter randomized clinical trial.
    Stavropoulos A; Becker J; Capsius B; Açil Y; Wagner W; Terheyden H
    J Clin Periodontol; 2011 Oct; 38(10):966-74. PubMed ID: 21797917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bone regeneration in rabbit calvarial critical-sized defects filled with composite in situ formed xenogenic dentin and biphasic tricalcium phosphate/hyroxyapatite mixture.
    Kamal M; Andersson L; Al-Asfour A; Bartella AK; Gremse F; Rosenhain S; Gabato S; Hölzle F; Kessler P; Lethaus B
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):773-782. PubMed ID: 30253039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Histological and Histomorphometrical Determination of the Biogradation of β-Tricalcium Phosphate Granules in Maxillary Sinus Floor Augmentation: A Prospective Observational Study.
    Okada T; Kanai T; Tachikawa N; Munakata M; Kasugai S
    Implant Dent; 2017 Apr; 26(2):275-283. PubMed ID: 28301385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superior effect of MD05, beta-tricalcium phosphate coated with recombinant human growth/differentiation factor-5, compared to conventional bone substitutes in the rat calvarial defect model.
    Poehling S; Pippig SD; Hellerbrand K; Siedler M; Schütz A; Dony C
    J Periodontol; 2006 Sep; 77(9):1582-90. PubMed ID: 16945037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone formation in a rat calvarial defect model after transplanting autogenous bone marrow with beta-tricalcium phosphate.
    Shirasu N; Ueno T; Hirata Y; Hirata A; Kagawa T; Kanou M; Sawaki M; Wakimoto M; Ota A; Imura H; Matsumura T; Yamada T; Yamachika E; Sano K
    Acta Histochem; 2010 May; 112(3):270-7. PubMed ID: 19403161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative study of biphasic calcium phosphate with beta-tricalcium phosphate in rat cranial defects--A molecular-biological and histological study.
    Kunert-Keil C; Scholz F; Gedrange T; Gredes T
    Ann Anat; 2015 May; 199():79-84. PubMed ID: 24439994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel use of cranial epidural space in rabbits as an animal model to investigate bone volume augmentation potential of different bone graft substitutes.
    Valdivia-Gandur I; Engelke W; Beltrán V; Borie E; Fuentes R; Manzanares-Céspedes MC
    Head Face Med; 2016 Dec; 12(1):35. PubMed ID: 27906068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of different hydroxyapatite:β-tricalcium phosphate ratios on the osteoconductivity of biphasic calcium phosphate in the rabbit sinus model.
    Lim HC; Zhang ML; Lee JS; Jung UW; Choi SH
    Int J Oral Maxillofac Implants; 2015; 30(1):65-72. PubMed ID: 25265122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodegradation property of beta-tricalcium phosphate-collagen composite in accordance with bone formation: a comparative study with Bio-Oss Collagen® in a rat critical-size defect model.
    Kato E; Lemler J; Sakurai K; Yamada M
    Clin Implant Dent Relat Res; 2014 Apr; 16(2):202-11. PubMed ID: 22809239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of carbonate apatite and beta-tricalcium phosphate (resorbable calcium phosphates) implanted subcutaneously into the back of rats.
    Nagayama M; Takeuchi H; Doi Y
    Dent Mater J; 2006 Jun; 25(2):219-25. PubMed ID: 16916221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced bone formation in the vicinity of porous β-TCP scaffolds exhibiting slow release of collagen-derived tripeptides.
    Kamikura K; Minatoya T; Terada-Nakaishi M; Yamamoto S; Sakai Y; Furusawa T; Matsushima Y; Unuma H
    J Mater Sci Mater Med; 2017 Sep; 28(9):132. PubMed ID: 28744614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implanted octacalcium phosphate is more resorbable than beta-tricalcium phosphate and hydroxyapatite.
    Kamakura S; Sasano Y; Shimizu T; Hatori K; Suzuki O; Kagayama M; Motegi K
    J Biomed Mater Res; 2002 Jan; 59(1):29-34. PubMed ID: 11745534
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complete subchondral bone defect regeneration with a tricalcium phosphate collagen implant and osteoinductive growth factors: a randomized controlled study in Göttingen minipigs.
    Gotterbarm T; Breusch SJ; Jung M; Streich N; Wiltfang J; Berardi Vilei S; Richter W; Nitsche T
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):933-42. PubMed ID: 24259283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microstructure, physical properties, and bone regeneration effect of the nano-sized β-tricalcium phosphate granules.
    Lee DS; Pai Y; Chang S; Kim DH
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():971-6. PubMed ID: 26478393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of beta-tricalcium phosphate/collagen sponge composite for bone regeneration.
    Matsuno T; Nakamura T; Kuremoto K; Notazawa S; Nakahara T; Hashimoto Y; Satoh T; Shimizu Y
    Dent Mater J; 2006 Mar; 25(1):138-44. PubMed ID: 16706309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.