These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37853693)

  • 1. Inferring pointwise diffusion properties of single trajectories with deep learning.
    Requena B; Masó-Orriols S; Bertran J; Lewenstein M; Manzo C; Muñoz-Gil G
    Biophys J; 2023 Nov; 122(22):4360-4369. PubMed ID: 37853693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor.
    Maizón HB; Barrantes FJ
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34695840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gramian angular fields for leveraging pretrained computer vision models with anomalous diffusion trajectories.
    Garibo-I-Orts Ò; Firbas N; Sebastiá L; Conejero JA
    Phys Rev E; 2023 Mar; 107(3-1):034138. PubMed ID: 37072993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian deep learning for error estimation in the analysis of anomalous diffusion.
    Seckler H; Metzler R
    Nat Commun; 2022 Nov; 13(1):6717. PubMed ID: 36344559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Particle Diffusion Characterization by Deep Learning.
    Granik N; Weiss LE; Nehme E; Levin M; Chein M; Perlson E; Roichman Y; Shechtman Y
    Biophys J; 2019 Jul; 117(2):185-192. PubMed ID: 31280841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NOBIAS: Analyzing anomalous diffusion in single-molecule tracks with nonparametric Bayesian inference.
    Chen Z; Geffroy L; Biteen JS
    Front Bioinform; 2021; 1():. PubMed ID: 35498544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Diffusion Heterogeneity in Single Particle Tracking Trajectories Using a Hidden Markov Model with Measurement Noise Propagation.
    Slator PJ; Cairo CW; Burroughs NJ
    PLoS One; 2015; 10(10):e0140759. PubMed ID: 26473352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying transport behavior of single-molecule trajectories.
    Regner BM; Tartakovsky DM; Sejnowski TJ
    Biophys J; 2014 Nov; 107(10):2345-51. PubMed ID: 25418303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Molecule Tracking Microscopy - A Tool for Determining the Diffusive States of Cytosolic Molecules.
    Rocha JM; Gahlmann A
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31545311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of particle trajectories in living cells: Machine learning versus statistical testing hypothesis for fractional anomalous diffusion.
    Janczura J; Kowalek P; Loch-Olszewska H; Szwabiński J; Weron A
    Phys Rev E; 2020 Sep; 102(3-1):032402. PubMed ID: 33076015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of diffusive states from single-particle trajectory in heterogeneous medium using machine-learning methods.
    Matsuda Y; Hanasaki I; Iwao R; Yamaguchi H; Niimi T
    Phys Chem Chem Phys; 2018 Sep; 20(37):24099-24108. PubMed ID: 30204178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh-Speed Imaging of Rotational Diffusion on a Lipid Bilayer.
    Mazaheri M; Ehrig J; Shkarin A; Zaburdaev V; Sandoghdar V
    Nano Lett; 2020 Oct; 20(10):7213-7219. PubMed ID: 32786953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Objective comparison of methods to decode anomalous diffusion.
    Muñoz-Gil G; Volpe G; Garcia-March MA; Aghion E; Argun A; Hong CB; Bland T; Bo S; Conejero JA; Firbas N; Garibo I Orts Ò; Gentili A; Huang Z; Jeon JH; Kabbech H; Kim Y; Kowalek P; Krapf D; Loch-Olszewska H; Lomholt MA; Masson JB; Meyer PG; Park S; Requena B; Smal I; Song T; Szwabiński J; Thapa S; Verdier H; Volpe G; Widera A; Lewenstein M; Metzler R; Manzo C
    Nat Commun; 2021 Oct; 12(1):6253. PubMed ID: 34716305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractal analysis of lateral movement in biomembranes.
    Gmachowski L
    Eur Biophys J; 2018 Apr; 47(3):309-316. PubMed ID: 29094176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractal model of anomalous diffusion.
    Gmachowski L
    Eur Biophys J; 2015 Dec; 44(8):613-21. PubMed ID: 26129728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlating anomalous diffusion with lipid bilayer membrane structure using single molecule tracking and atomic force microscopy.
    Skaug MJ; Faller R; Longo ML
    J Chem Phys; 2011 Jun; 134(21):215101. PubMed ID: 21663377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the Diffusivity Change from Single-Molecule Trajectories on Living Cells.
    Zhao R; Yuan J; Li N; Sun Y; Xia T; Fang X
    Anal Chem; 2019 Nov; 91(21):13390-13397. PubMed ID: 31580655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of anomalous diffusion using recurrent neural networks.
    Bo S; Schmidt F; Eichhorn R; Volpe G
    Phys Rev E; 2019 Jul; 100(1-1):010102. PubMed ID: 31499844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.