These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37853948)

  • 1. Understanding role of roots in plant response to drought: Way forward to climate-resilient crops.
    Kalra A; Goel S; Elias AA
    Plant Genome; 2024 Mar; 17(1):e20395. PubMed ID: 37853948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shaping the root system architecture in plants for adaptation to drought stress.
    Ranjan A; Sinha R; Singla-Pareek SL; Pareek A; Singh AK
    Physiol Plant; 2022 Mar; 174(2):e13651. PubMed ID: 35174506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Phenotyping Methods for Breeding Drought-Tolerant Crops.
    Kim M; Lee C; Hong S; Kim SL; Baek JH; Kim KH
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34361030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognizing the hidden half in wheat: root system attributes associated with drought tolerance.
    Li C; Li L; Reynolds MP; Wang J; Chang X; Mao X; Jing R
    J Exp Bot; 2021 Jul; 72(14):5117-5133. PubMed ID: 33783492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans.
    Valliyodan B; Ye H; Song L; Murphy M; Shannon JG; Nguyen HT
    J Exp Bot; 2017 Apr; 68(8):1835-1849. PubMed ID: 27927997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives.
    Shelake RM; Kadam US; Kumar R; Pramanik D; Singh AK; Kim JY
    Plant Commun; 2022 Nov; 3(6):100417. PubMed ID: 35927945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet.
    de la Fuente C; Grondin A; Sine B; Debieu M; Belin C; Hajjarpoor A; Atkinson JA; Passot S; Salson M; Orjuela J; Tranchant-Dubreuil C; Brossier JR; Steffen M; Morgado C; Dinh HN; Pandey BK; Darmau J; Champion A; Petitot AS; Barrachina C; Pratlong M; Mounier T; Nakombo-Gbassault P; Gantet P; Gangashetty P; Guedon Y; Vadez V; Reichheld JP; Bennett MJ; Kane NA; Guyomarc'h S; Wells DM; Vigouroux Y; Laplaze L
    Elife; 2024 Jan; 12():. PubMed ID: 38294329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing rhizosphere microbiomes for drought-resilient crop production.
    de Vries FT; Griffiths RI; Knight CG; Nicolitch O; Williams A
    Science; 2020 Apr; 368(6488):270-274. PubMed ID: 32299947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing drought tolerance in C(4) crops.
    Lopes MS; Araus JL; van Heerden PD; Foyer CH
    J Exp Bot; 2011 May; 62(9):3135-53. PubMed ID: 21511912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root and canopy traits and adaptability genes explain drought tolerance responses in winter wheat.
    Nehe AS; Foulkes MJ; Ozturk I; Rasheed A; York L; Kefauver SC; Ozdemir F; Morgounov A
    PLoS One; 2021; 16(4):e0242472. PubMed ID: 33819270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The battle of crops against drought: Genetic dissection and improvement.
    Yang Z; Qin F
    J Integr Plant Biol; 2023 Feb; 65(2):496-525. PubMed ID: 36639908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breeding crops for drought-affected environments and improved climate resilience.
    Cooper M; Messina CD
    Plant Cell; 2023 Jan; 35(1):162-186. PubMed ID: 36370076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lupenone, a wonder chemical obtained from Euphorbia segetalis to boost affinity for the transcriptional factor escalating drought-tolerance in Solanum Lycopersicum: A cutting-edge computational biology approach.
    Debnath S; Alqahtani T; Alqahtani A; Alharbi HM; Akash S
    PLoS One; 2023; 18(11):e0281293. PubMed ID: 37939107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops.
    Siddiqui MN; Léon J; Naz AA; Ballvora A
    J Exp Bot; 2021 Feb; 72(4):1007-1019. PubMed ID: 33096558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root-Related Genes in Crops and Their Application under Drought Stress Resistance-A Review.
    Qin T; Kazim A; Wang Y; Richard D; Yao P; Bi Z; Liu Y; Sun C; Bai J
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Upland cotton for drought resilience, productivity, and fiber quality: comparative evaluation and genetic dissection.
    Ulloa M; De Santiago LM; Hulse-Kemp AM; Stelly DM; Burke JJ
    Mol Genet Genomics; 2020 Jan; 295(1):155-176. PubMed ID: 31620883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The carbon isotopic signature of C
    Eggels S; Blankenagel S; Schön CC; Avramova V
    Theor Appl Genet; 2021 Jun; 134(6):1663-1675. PubMed ID: 33575820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploitation of Drought Tolerance-Related Genes for Crop Improvement.
    Wang J; Li C; Li L; Reynolds M; Mao X; Jing R
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drought stress in maize: stress perception to molecular response and strategies for its improvement.
    Singh A; Pandey H; Pandey S; Lal D; Chauhan D; Aparna ; Antre SH; B S; Kumar A
    Funct Integr Genomics; 2023 Sep; 23(4):296. PubMed ID: 37697159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.