These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 37854191)
1. Identifying potential biomarkers for non-obstructive azoospermia using WGCNA and machine learning algorithms. Tang Q; Su Q; Wei L; Wang K; Jiang T Front Endocrinol (Lausanne); 2023; 14():1108616. PubMed ID: 37854191 [TBL] [Abstract][Full Text] [Related]
2. A comparative cross-platform analysis of cuproptosis-related genes in human nonobstructive azoospermia: An observational study. Jiang S; Wei Y; Li Y; Liu W; Wang Z; Meng X; Zhu Q; Shen L Medicine (Baltimore); 2024 Aug; 103(31):e39176. PubMed ID: 39093776 [TBL] [Abstract][Full Text] [Related]
3. Identification and validation of diagnostic signature genes in non-obstructive azoospermia by machine learning. Ran L; Gao Z; Chen Q; Cui F; Liu X; Xue B Aging (Albany NY); 2023 May; 15(10):4465-4480. PubMed ID: 37227814 [TBL] [Abstract][Full Text] [Related]
4. An artificial neural network model to diagnose non-obstructive azoospermia based on RNA-binding protein-related genes. Peng F; Muhuitijiang B; Zhou J; Liang H; Zhang Y; Zhou R Aging (Albany NY); 2023 Apr; 15(8):3120-3140. PubMed ID: 37116198 [TBL] [Abstract][Full Text] [Related]
5. Identification and validation of SHC1 and FGFR1 as novel immune-related oxidative stress biomarkers of non-obstructive azoospermia. Pan Y; Chen X; Zhou H; Xu M; Li Y; Wang Q; Xu Z; Ren C; Liu L; Liu X Front Endocrinol (Lausanne); 2024; 15():1356959. PubMed ID: 39391879 [TBL] [Abstract][Full Text] [Related]
6. Constructing a seventeen-gene signature model for non-obstructive azoospermia based on integrated transcriptome analyses and WGCNA. Chen Y; Yuan P; Gu L; Bai J; Ouyang S; Sun T; Liu K; Wang Z; Liu C Reprod Biol Endocrinol; 2023 Mar; 21(1):30. PubMed ID: 36945018 [TBL] [Abstract][Full Text] [Related]
8. Integrative analyses of potential biomarkers and pathways for non-obstructive azoospermia. Zhong Y; Chen X; Zhao J; Deng H; Li X; Xie Z; Zhou B; Xian Z; Li X; Luo G; Li H Front Genet; 2022; 13():988047. PubMed ID: 36506310 [No Abstract] [Full Text] [Related]
9. Integrative bioinformatics approaches for identifying potential biomarkers and pathways involved in non-obstructive azoospermia. Hu T; Luo S; Xi Y; Tu X; Yang X; Zhang H; Feng J; Wang C; Zhang Y Transl Androl Urol; 2021 Jan; 10(1):243-257. PubMed ID: 33532314 [TBL] [Abstract][Full Text] [Related]
10. Altered Gene Expression in the Testis of Infertile Patients with Nonobstructive Azoospermia. Wang Z; Ding Z; Guan Y; Liu C; Wang L; Shan W; Yang J Comput Math Methods Med; 2021; 2021():5533483. PubMed ID: 34221106 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of immune status in testis and macrophage polarization associated with testicular damage in patients with nonobstructive azoospermia. Zheng W; Zhang S; Jiang S; Huang Z; Chen X; Guo H; Li M; Zheng S Am J Reprod Immunol; 2021 Nov; 86(5):e13481. PubMed ID: 34192390 [TBL] [Abstract][Full Text] [Related]
12. Identification of biomarkers associated with macrophage infiltration in non-obstructive azoospermia using single-cell transcriptomic and microarray data. Luo X; Zheng H; Nai Z; Li M; Li Y; Lin N; Li Y; Wu Z Ann Transl Med; 2023 Jan; 11(2):55. PubMed ID: 36819497 [TBL] [Abstract][Full Text] [Related]
13. Construction and external validation of a 5-gene random forest model to diagnose non-obstructive azoospermia based on the single-cell RNA sequencing of testicular tissue. Zhou R; Lv X; Chen T; Chen Q; Tian H; Yang C; Guo W; Liu C Aging (Albany NY); 2021 Nov; 13(21):24219-24235. PubMed ID: 34738918 [TBL] [Abstract][Full Text] [Related]
14. Machine learning and integrative analysis identify the common pathogenesis of azoospermia complicated with COVID-19. He J; Zhao Y; Zhou Z; Zhang M Front Immunol; 2023; 14():1114870. PubMed ID: 37283758 [TBL] [Abstract][Full Text] [Related]
15. Screening for biomarkers in age-related macular degeneration. Han D; He X Heliyon; 2023 Jul; 9(7):e16981. PubMed ID: 37415944 [TBL] [Abstract][Full Text] [Related]
16. A 3-Gene Random Forest Model to Diagnose Non-obstructive Azoospermia Based on Transcription Factor-Related Henes. Zhou R; Liang J; Chen Q; Tian H; Yang C; Liu C Reprod Sci; 2023 Jan; 30(1):233-246. PubMed ID: 35715550 [TBL] [Abstract][Full Text] [Related]
17. Identification and Potential Value of Candidate Genes in Patients With Non-obstructive Azoospermia. Shen Y; Wu X; Li Q; Huang X; Wang J; Zhao L; Zhang T; Xuan X Urology; 2022 Jun; 164():133-139. PubMed ID: 35219767 [TBL] [Abstract][Full Text] [Related]
18. [Exploring the mechanisms of ferroptosis in non-obstructive azoospermia based on bioinformatics and machine learning]. Shen HP; Song JY; Zhou X; Liu YH; Chen YJ; Cai YL; Zhang YB; Yu Y; Chen XQ Zhonghua Nan Ke Xue; 2023 Oct; 29(10):874-880. PubMed ID: 38639655 [TBL] [Abstract][Full Text] [Related]
19. Construction of m6A-Related Gene Prediction Model and Subtype Analysis in Non-Obstructive Azoospermia Based on Bioinformatics. Li G; Che K; Wu J; Yang B Am J Reprod Immunol; 2024 Jul; 92(1):e13892. PubMed ID: 38958252 [TBL] [Abstract][Full Text] [Related]
20. Identification and validation of novel biomarkers associated with immune infiltration for the diagnosis of osteosarcoma based on machine learning. Ji Y; Lin Z; Li G; Tian X; Wu Y; Wan J; Liu T; Xu M Front Genet; 2023; 14():1136783. PubMed ID: 37732314 [No Abstract] [Full Text] [Related] [Next] [New Search]