These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37854569)

  • 21. Establishing the quantitative relationship between diffuse speckle contrast analysis signals with absolute blood flow.
    Liu J; Wang H; Wang P; Jin Z; Li W; Zhang H; Shen Z; Xiong D
    Biomed Opt Express; 2018 Oct; 9(10):4792-4806. PubMed ID: 30319903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Momentum transfer Monte Carlo for the simulation of laser speckle imaging and its application in the skin.
    Regan C; Hayakawa C; Choi B
    Biomed Opt Express; 2017 Dec; 8(12):5708-5723. PubMed ID: 29296499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noncontact speckle contrast diffuse correlation tomography of blood flow distributions in tissues with arbitrary geometries.
    Mazdeyasna S; Huang C; Zhao M; Agochukwu NB; Bahrani AA; Wong L; Yu G
    J Biomed Opt; 2018 Sep; 23(9):1-9. PubMed ID: 30251483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging.
    Rice TB; Kwan E; Hayakawa CK; Durkin AJ; Choi B; Tromberg BJ
    Biomed Opt Express; 2013; 4(12):2880-92. PubMed ID: 24409388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Separating single- and multiple-scattering components in laser speckle contrast imaging of tissue blood flow.
    Zhang Y; Wang C; Tong S; Miao P
    Biomed Opt Express; 2022 May; 13(5):2881-2895. PubMed ID: 35774341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a Monte Carlo-wave model to simulate time domain diffuse correlation spectroscopy measurements from first principles.
    Cheng X; Chen H; Sie EJ; Marsili F; Boas DA
    J Biomed Opt; 2022 Feb; 27(8):. PubMed ID: 35199501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep Learning-Based Super-resolution Ultrasound Speckle Tracking Velocimetry.
    Park JH; Choi W; Yoon GY; Lee SJ
    Ultrasound Med Biol; 2020 Mar; 46(3):598-609. PubMed ID: 31917044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiparameter wide-field integrated optical imaging system-based spatially modulated illumination and laser speckles in model of tissue injuries.
    Bloygrund H; Franjy-Tal Y; Rosenzweig T; Abookasis D
    J Biophotonics; 2019 Oct; 12(10):e201900141. PubMed ID: 31187933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microvascular blood flow monitoring with laser speckle contrast imaging using the generalized differences algorithm.
    Humeau-Heurtier A; Mahé G; Abraham P
    Microvasc Res; 2015 Mar; 98():54-61. PubMed ID: 25576743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing.
    Shi R; Chen M; Tuchin VV; Zhu D
    Biomed Opt Express; 2015 Jun; 6(6):1977-89. PubMed ID: 26114023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast imaging of high-resolution two-dimensional effective attenuation profile from diffuse reflectance.
    Tse J; Chen LK
    J Biomed Opt; 2012 Apr; 17(4):046005. PubMed ID: 22559683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitivity of laser speckle contrast imaging to flow perturbations in the cortex.
    Davis MA; Gagnon L; Boas DA; Dunn AK
    Biomed Opt Express; 2016 Mar; 7(3):759-75. PubMed ID: 27231587
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of kurtosis for locating deep blood vessels in raw speckle imaging using a homogeneity representation.
    Peregrina-Barreto H; Perez-Corona E; Rangel-Magdaleno J; Ramos-Garcia R; Chiu R; Ramirez-San-Juan JC
    J Biomed Opt; 2017 Jun; 22(6):66004. PubMed ID: 28604934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics.
    Ramirez-San-Juan JC; Mendez-Aguilar E; Salazar-Hermenegildo N; Fuentes-Garcia A; Ramos-Garcia R; Choi B
    Biomed Opt Express; 2013; 4(10):1883-9. PubMed ID: 24156051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anatomical Modeling and Optimization of Speckle Contrast Optical Tomography.
    Lin CP; Orukari I; Frisk LK; Verma M; Chetia S; Beslija F; Eggebrecht AT; Durduran T; Culver JP; Trobaugh JW
    bioRxiv; 2023 Sep; ():. PubMed ID: 37732196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blood Flow Prediction in Multi-Exposure Speckle Contrast Imaging Using Conditional Generative Adversarial Network.
    Jain P; Gupta S
    Cureus; 2023 Apr; 15(4):e37349. PubMed ID: 37182031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-registered speckle contrast optical tomography and frequency domain-diffuse optical tomography for imaging of the fifth metatarsal.
    Majeski JB; Dar IA; Choe R
    Biomed Opt Express; 2022 Oct; 13(10):5358-5376. PubMed ID: 36425631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Noninvasive noncontact speckle contrast diffuse correlation tomography of cerebral blood flow in rats.
    Huang C; Mazdeyasna S; Chen L; Abu Jawdeh EG; Bada HS; Saatman KE; Chen L; Yu G
    Neuroimage; 2019 Sep; 198():160-169. PubMed ID: 31112789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement of Speckle Contrast Image Processing by an Efficient Algorithm.
    Steimers A; Farnung W; Kohl-Bareis M
    Adv Exp Med Biol; 2016; 876():419-425. PubMed ID: 26782241
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.